Добавления полосового фильтра для усилителя дмв. Простой активный фильтр для двухполосного усилителя. Антенный усилитель цифрового приёма телевидения

CMA-4544PF-W или аналогичны;

  • 3 светодиода (зелёный, жёлтый и красный, вот из такого набора , например);
  • 3 резистора по 220 Ом (вот отличный набор резисторов самых распространённых номиналов);
  • соединительные провода (рекомендую вот такой набор);
  • макетная плата (breadboard);
  • персональный компьютер со средой разработки Arduino IDE.
  • 1 Электретный капсюльный микрофон CMA-4544PF-W

    Мы воспользуемся готовым модулем, в котором присутствует микрофон, а также минимально необходимая обвязка. Приобрести такой модуль можно .

    2 Схема подключения микрофона к Arduino

    Модуль содержит в себе электретный микрофон, которому необходимо питание от 3 до 10 вольт. Полярность при подключении важна. Подключим модуль по простой схеме:

    • вывод "V" модуля - к питанию +5 вольт,
    • вывод "G" - к GND,
    • вывод "S" - к аналоговому порту "A0" Arduino.

    3 Скетч для считывания показаний электретного микрофона

    Напишем программу для Arduino, которая будет считывать показания с микрофона и выводить их в последовательный порт в милливольтах.

    Const int micPin = A0; // задаём пин, куда подключён микрофон void setup() { Serial.begin(9600); // инициализация послед. порта } void loop() { int mv = analogRead(micPin) * 5.0 / 1024.0 * 1000.0; // значения в милливольтах Serial.println(mv); // выводим в порт }

    Для чего может понадобиться подключать микрофон к Arduino? Например, для измерения уровня шума; для управления роботом: поехать по хлопку или остановиться. Некоторые даже умудряются «обучить» Arduino определять разные звуки и таким образом создают более интеллектуальное управление: робот будет понимать команды «Стоп» и «Иди» (как, например, в статье «Распознавание голоса с помощью Arduino»).

    4 «Эквалайзер» на Arduino

    Давайте соберём своеобразный простейший эквалайзер по приложенной схеме.


    5 Скетч «эквалайзера»

    Немного модифицируем скетч. Добавим светодиоды и пороги их срабатывания.

    Const int micPin = A0; const int gPin = 12; const int yPin = 11; const int rPin = 10; void setup() { Serial.begin(9600); pinMode(gPin, OUTPUT); pinMode(yPin, OUTPUT); pinMode(rPin, OUTPUT); } void loop() { int mv = analogRead(micPin) * 5.0 / 1024.0 * 1000.0; // значения в милливольтах Serial.println(mv); // выводим в порт /* Пороги срабатывания светодиодов настраиваются вами экспериментальным методом: */ if (mv }

    Эквалайзер готов! Попробуйте поговорить в микрофон, и увидите, как загораются светодиоды, когда вы меняете громкость речи.

    Значения порогов, после которых загораются соответствующие светодиоды, зависят от чувствительности микрофона. На некоторых модулях чувствительность задаётся подстроечным резистором, на моём модуле его нет. Пороги получились 2100, 2125 и 2150 мВ. Вам для своего микрофона придётся определить их самим.

    Используется для слежения за уровнем шума или обнаружения громких сигналов: хлопков, стуков или свиста.

    Элементы платы

    Микрофон и электронная обвязка модуля

    Микрофон преобразует звуковые колебания в колебания электрического тока. Если этот сигнал напрямую подключить к аналоговым входам микроконтроллера, такого как Arduino, результат скорее всего будет неудовлетворительным. Сигнал с микрофона предварительно необходимо усилить, избавиться от отрицательной полуволны и сгладить сигнал. Все эти действия выполняет электронная обвязка модуля.

    Почему мы не можем просто взять любой микрофон? Этому есть несколько причин.

    Во-первых, сигнал от микрофона очень слаб. Настолько, что, если мы подключим его к аналоговому входу Arduino, то analogRead всегда будет возвращать 0 . Перед тем как использовать, сигнал с микрофона необходимо усилить.

    Во-вторых, даже усиленный звуковой сигнал - это всегда колебания. Поэтому показания микрофона очень зависят от того, в какой момент времени произошло измерение напряжения микроконтроллером. Даже при самом громком хлопке analogRead может вернуть 0 .

    Как видим, даже измерение максимальных значений амплитуды не даст четкую информацию об уровне громкости. Чтобы получить эту информацию, нужно делать измерения максимально часто и подвергать эти данные математической обработке. Численной характеристикой громкости является площадь под графиком звуковой волны. Именно её и «считает» электронная обвязка микрофона.

    Потенциометр регулировки чувствительности

    Потенциометр регулирует коэффициент усиления усилителя сигнала с микрофона. Он бывает полезен, если необходимо изменить условия срабатывания вашего устройства без изменения его прошивки. Чем выше чувствительность модуля, тем выше доля помех в полезном сигнале датчика. Мы рекомендуем начинать работу с модулем при среднем положении потенциометра. В таком случае чувствительность модуля будет легко изменить в любую сторону.

    Контакты подключения трёхпроводного шлейфа

    Модуль подключается к управляющей электронике двумя трёхпроводными шлейфами .

    Назначение контактов трёхпроводного шлейфа:

      Питание (V) - красный провод. На него должно подаваться напряжение от 3 до 5 В.

      Земля (G) - чёрный провод. Должен быть соединён с землёй микроконтроллера.

      Сигнал датчика шума (E) - жёлтый провод. Через него происходит считывание сигнала датчика уровня шума микроконтроллером.

    Вторым шлейфом с пина S снимается сигнал аналогового микрофона.

    Видеообзор

    Пример использования

    Отобразим показания датчика шума и микрофона на экране компьютера. В качестве управляющего микроконтроллера возьмём Arduino.

    soundLoudnessSensor.ino #define SOUND_PIN A5 #define NOISE_PIN A4 void setup() { // открываем монитор Serial-порта Serial.begin (9600 ) ; } void loop() { // считываем показания микрофона int soundValue = analogRead(SOUND_PIN) ; // считываем показания уровня шума int noiseValue = analogRead(NOISE_PIN) ; Serial.print (soundValue) ; Serial.print ("\t \t " ) ; Serial.println (noiseValue) ; }

    В статье речь пойдет об активном фильтре для двухполосного усилителя . Фильтр не нуждается в трудоемкой настройке и выполнен на доступных ОУ.

    Первый раз эту схему я собирал лет 10 назад, нужно было раскачать колонки Радиотехника S90 не очень мощным самодельным усилителем (Ватт 25-30 навскидку), цель - узнать на что вообще способны эти колонки.

    Но мощности усилителя явно не хватало. И в одной интересной книжке я набрел на схему этого фильтра. Решил попробовать раскачать S90 двухполосным усилителем.

    Одно из преимуществ заключается в том, что при перегрузке низкочастотного канала, его искажения хорошо маскируются СЧ-ВЧ звеном, следовательно максимальная неискаженная мощность на слух становится заметно больше.
    В итоге мне удалось раскачать одну колонку так, что шифер на гараже стал трещать.

    Схема

    Плата

    Входной сигнал подан на неинвертирующий вход операционного усилителя МС1, который выполняет функции активного фильтра низких частот с крутизной спада частотной характеристики 18 дБ/октаву, и на неинвертирующий вход операционного усилителя МС2, который выполняет функции дифференциального усилителя с коэффициентом передачи по напряжению Ku=1.

    На инвертирующий вход МС2 подан сигнал с выхода фильтра низких частот МС1. В дифференциальном усилителе МС2 из спектра входного сигнала вычитается его низкочастотная часть, и на выходе МС2 появляется только высокочастотная часть входного сигнала.

    Таким образом, требуется лишь обеспечить заданную частоту среза фильтра низких частот, которая и будет частотой разделения. Значения элементов фильтра находятся из соотношений C1 = C2 = C3; R1=R4; R5=R1/6,8; R1C1=0,4/Fp, где Fр - частота разделения.

    R1 я брал 22 кОм, а дальше все рассчитывается по формулам в зависимости от требуемой частоты разделения.
    В качестве операционных усилителей пробовал К157УД2 (сдвоенный ОУ - 2 корпуса) и К1401УД2 (счетверенный ОУ - печатка под него), оба показали хорошие результаты.
    Конечно, можно применить любой счетверенный импортный ОУ.

    Источник

    Книга "Высококачественный усилитель низкой частоты", Г. Л. Левинзон, А.В. Логинов, 1977 год

    Файлы

    Прилагается рисунок печатной платы для К1401УД2, под микросхемой перемычка.
    🕗 08/10/11 ⚖️ 6,41 Kb ⇣ 420

    Фильтрации излучаемых передающими устройствами сигналов уделяется все больше и больше внимания. Излучение сигналов на частотах, отличающихся от рабочей, можно расценить, по аналогии с дорожным движением, как выезд на встречную полосу из-за негабаритности транспортного средства.

    С одной стороны, как радиолюбители, так и профессионалы применяют на выходе передатчиков фильтры нижних частот (ФНЧ) с целью подавления только гармонических составляющих. С другой стороны, в погоне за уменьшением габаритов, а значит, и экономией конструктивных материалов производители передающей аппаратуры создают все новые и новые «шедевры»-трансиверы, которые или имеют самые простые фильтры на выходе передатчиков, или не имеют их вовсе. В последнем случае расчет делается на подключение внешних фильтрующее согласующих устройств — различного рода тюнеров, которые или выпускаются отдельно опционально, или не выпускаются для конкретного трансивера вовсе.

    При желании увеличить мощность выходного сигнала передатчика радиолюбитель изготавливает или приобретает усилитель мощности, который имеет в своем составе только ФНЧ (например, в виде выходного П-контура). Такой фильтр в известной степени подавляет гармоники основного сигнала, а сам усилитель усиливает весь спектр сигнала, который поступает на него с трансивера. Следовательно, подавление гармонических составляющих, которые обусловлены нелинейностью каскадов как в трансивере, так и в усилителе мощности, уменьшается. Другие составляющие, частоты которых находятся ниже частоты среза ФНЧ усилителя мощности, поступая на него, усиливаются и проходят в антенну. Резонансная, хорошо согласованная на рабочей частоте антенна частично подавляет нежелательные спектральные составляющие, которые становятся, однако, причиной помех в ближней зоне.

    В настоящее время, кроме «пролезающих» на выход трансивера наводок гетеродинов и их гармоник, в составе выходного сигнала трансивера имеются также и «цифровые» флуктуации от различного рода цифровых «примочек» (шкал, формирователей, делителей, DSP, от введенных в трансивер при совместном использовании с компьютером шумовых составляющих).

    Таким образом, для защиты эфира от «подготовительных» вспомогательных сигналов необходимо иметь на выходе передающей аппаратуры не только ФНЧ, но и ФВЧ с общей полосой прозрачности, в идеале равной полосе излучаемого сигнала: для SSB — 2,4 кГц, для CW — для AM — 6 кГц, для ЧМ – 10…15 кГц. Поскольку такие полосы пропускания на выходе передающих устройств обеспечить на практике не представляется возможным (да еще с учетом перестройки такой полосы по диапазонам), следует на выходе, например, трансивера установить полосовой фильтр, который обеспечит не только подавление вредных составляющих сигнала, но и согласование выхода передатчика трансивера с антенной или со входом усилителя мощности. При этом основной сигнал будет очищен и от гармоник, и от шумовых составляющих, более низкочастотных чем полезный выходной сигнал. Поскольку полосовой фильтр обладает, в зависимости от добротности реактивных элементов его составляющих, определенной полосой пропускания, то либо во всем поддиапазоне частот, либо в требуемой его части настройку фильтра и согласование можно не изменять.

    Полосовой фильтр можно изготовить как по схеме с индуктивнои связью, что более желательно, так и по схеме с автотрансформаторной связью.

    На рис.1 приведена схема фильтра с индуктивной связью для использования на УКВ, на рис.2 — с автотрансформаторной связью для применения на УКВ. На УКВ для улучшения параметров фильтра следует вместо катушек применять резонаторы (на более низких частотах — спиральные, на более высоких — коаксиальные).

    По аналогии с УКВ, на KB можно применять как спиральные резонаторы, так и обычные катушки.

    На рис.3 приведена схема полосового фильтра с катушками связи, на рис.4 — с автотрансформаторной связью. Фильтры с катушками связи позволяют обеспечить согласование без вскрытия резонаторов, а фильтры с автотрансформаторной связью при согласовании требуют перемещения отводов для входа и выхода по виткам катушки L1 (рис.4), или по центральному проводнику коаксиального резонатора (рис.2).

    Настройку фильтра и согласование по входу и выходу можно производить простым методом с помощью ГСС и ВЧ вольтметра, но нагляднее всего провести ее с помощью измерителя частотных характеристик (например, Х1-48). Полосовой фильтр — симметричное устройство, поэтому вход и выход можно менять местами.

    Конденсатор С1 предназначен для настройки полуволнового резонатора (в идеале) на рабочую частоту, излучаемую передатчиком, в реальности — на среднюю частоту полосы пропускания фильтра, ширина которой зависит от соотношения L1/C1 и степени нагрузки этого контура через индуктивную (с помощью последовательных контуров L2-C2 и L3-C3 - рис.1 и 3) или автотрансформаторную связь с ним, через отводы от L1 (рис.2 и 4).

    На экране ЭЛТ Х1-48 видна характеристика ПФ, влияние на нее подстроечных элементов (С1-СЗ) и нагрузки.

    Резонатор, конечно же, имеет большую физическую длину, но нет худа без добра - это обстоятельство позволяет отнести УМ от трансивера, что снижает напряженность электромагнитного поля в месте нахождения оператора, у трансивера. Благодаря этому улучшается экологическая обстановка на рабочем месте и повышается устойчивость всей радиопередающей системы к наводкам, самовозбуждению и т.д.

    Применение подобных фильтров на входе и выходе усилителя мощности позволит излучать в эфир узкий спектр, снизить вероятность появления TVI и BCI, а также более эффективно использовать ресурсы усилителя мощности. В самом деле, если подать сигнал с трансивера, особенно не имеющего на выходе тюнера, то выходная мощность подключенного к нему усилителя будет больше без полосового фильтра даже в том случае, если мы учтем затухание в фильтре и добавим мощности раскачки с трансивера для компенсации затухания. Это происходит потому, что часть выходной мощности приходится на «посторонние» составляющие спектра передатчика, которые при отсутствии полосового фильтра беспрепятственно проходят на вход усилителя и усиливаются. Очистив спектр передатчика с помощью ПФ, освободившийся «резерв» можно использовать по назначению, т.е. для увеличения выходной мощности передатчика на рабочей частоте.

    Если полосовой фильтр используется не только на входе усилителя мощности, но и на выходе (что весьма желательно), то следует обратить особое внимание на детали фильтра, точнее, их пригодность для применения в таком фильтре. Так, например, конденсатор переменной емкости С1, установленный в месте максимума напряжения на контуре, в зависимости от выходной мощности усилителя и добротности резонатора (катушки) должен иметь зазор между пластинами 3-10 мм. Очень важен надежный контакт с общим проводом у катушки L1, т.к. в этом месте контура имеет место максимум тока, поэтому диаметр провода катушки L1 должен быть достаточно большим.

    Оптимальную настройку полосового фильтра можно зафиксировать по максимальному отклонению стрелки измерителя анодного тока лампового усилителя мощности, или индикатора тока антенны, или по максимальной яркости свечения неоновой лампочки, расположенной непосредственно у антенного выхода фильтра или усилителя мощности.

    Цифровое эфирное телевидение в 100 километровой зоне от Москвы.

    Когда, наконец, пошёл снег, и наступила настоящая зима, я вспомнил про снег на экране дачноготелевизора при просмотре дециметровых каналов. Наступило время подготовки к лету.

    Пора внедрять цифровое телевидение на даче.

    С этого года цифровое вещание идёт двумя мультиплексными пакетами на частотах 498 МГци 546 МГц. Свободно (бесплатно, без абонентской платы) вещают 20 телевизионных программ в стандарте DVB – T 2. Остаётся купить приставку (стоимостью от 1200 руб.) к старому телевизору или новый телевизор с таким новым стандартом.

    Приставку – ресивер DVB – T 2 я себе уже купил. Советую вам тоже поторопиться. Знающие люди просто сметают их по несколько штук с прилавков. Мне тоже для сына ещё одну надо прикупить, для его Дома Белки.Проверил работу приёмника (ресивера) в городской квартире. Всё супер классно! В условиях плотной городской застройки, в отсутствии прямой видимости, (которая составляет 15 км, Москва,Восток), в отдалении от окон – отличное качество приёма на обычную 2-х усиковую сложенную антенну.Все 20 каналов проходят как с диска, без многоконтурной картинки и шумов. Это: 1 канал, Россия - 1, Россия – 2, НТВ, 5канал, Культура, Россия – 24, Карусель, ОТР, ТВЦ, РЕН ТВ, Спас, СТС, Домашний, ТВ – 3, Спорт +, Звезда, Мир, ТНТ, Муз ТВ.

    Мне же остаётся сделать антенный усилитель и антенну, ведь должен я, что-то сделать сам. И хотя старая широкополосная антенна вполне справится с цифровым приёмом, есть желание сделать самодельнуюмобильную активную антенну, ведь на этот диапазон она получится не больше книжки, и тогда телевизор можно будет смотреть в беседке. Думаю, что конструкция самой антенны упростится, ведь теперь она будет узкополосной, и согласовать её без потери усиления на фиксированной частоте проще.

    Пока же только остаётся гордиться собой, что в силу своей нерасторопностия не успел превратить дачный домик в межпланетный космический корабль, усыпав крышумногодиапазоннымиз-х этажными антеннами и спутниковыми тарелками.

    Антенный усилитель цифрового приёма телевидения.

    С начала я просто хотел сделать самодельный усилитель на дециметровый диапазон вещания 470 – 870 МГц, для приёма аналогово телевизионного сигнала, чтобы смести снег с экрана и повысить помехоустойчивость. Представить себе не можете, как сложно подавить сотовую связь, полосками разрывающую экран телевизора, так как по частотам она расположена вплотную к границам дециметрового диапазона телевизионных каналов. При приёме цифрового сигнала, такие полоски будут преобразовываться в квадратную мозаику. Но теперь задача упростилась и вместо широкой полосы 400 МГц (именно такая полоса пропускания заложена в усилителях активных дециметровых антенн), предстоит усилить только 50 - 80 МГц, а в этом случае легко удастся подавить помехи вне диапазона. Да и сам усилитель, имея меньшую полосу усиления, будет обладать меньшими шумами, а значит, увеличится дальность уверенного приёма.Для меня это особенно важно, так как когда передают погоду по области, мне приходится дополнительно отнимать 5 градусов, вследствие того, что регион с дачными участками находится в низине, следовательно, вероятность качественного радиоприёма под вопросом, поскольку приёмная антенна ниже уровня этого приёма. Решения два: высокоподнятая антенна или антенный усилитель, возможно, то и другое вместе. Последний симбиоз необходим на предельных границах приёма, которые составляют около 100 километров от телецентра.

    Но в любом случае усилитель необходим, так как на этой частоте существенные потери в кабеле.

    Сам усилитель состоит из одного активного элемента – транзистора и двух фильтров, ограничивающих полосу усиления и подавляющих помехи. Индуктивности L 1 – L 5 – составляющие фильтра ФВЧ (верхних частот), c дополнительной режекцией вблизи полосы пропускания, а L 8 – L 9 – звенья фильтра ФНЧ (нижних частот). Индуктивности L 6 – L 7 – корректирующиезвенья, выравнивающие частотную характеристику.

    Питание усилителя осуществляется от отдельного стабилизатора с выходным напряжением 3 – 3,3 вольта. Само питание усилителя обеспечивается по кабелю. Известные мне приставки, программой(с пульта) подают питание на антенный вход 5 или 12 вольт. При необходимости усилитель можно запитать от отдельного сетевого блока питания.

    Параметры усилителя.

    Полоса пропускания490 – 600 МГц.

    Коэффициент усиления 15 дБ.

    Подавление на 900 МГц более 25 дБ.

    Ток потребления 13 мА.

    Проверил усилитель по шумам на средней частоте усиления, подсоединив его к входу измерительного приёмника, предварительно измерив его соотношение сигнал / шум на уровне его чувствительности в режиме широкой полосы WFN .После подключения усилителя соотношение на выходе приёмника возросло в 2 раза, то есть совместно с усилителем почти в 2 раза выросла его чувствительность.

    Пока проверил усилитель в городских условиях, в месте отсутствия приёма второго мультиплексного пакета. При его подключении приём восстановился. Питание с напряжением 5 вольт осуществлял от обычной телефонной зарядки.

    Конструкция усилителя.

    В учебном заведении мне бы поставили двойку за то, что я использую в качестве печатной платы двухстороннийфольгированный стеклотекстолит толщиной 1,2 -1,5 мм. На СВЧ данный материал обладает потерями, поэтому параметры активных элементов будут отличаться от табличных данных. Однако, современные транзисторы имеют большой коэффициент усиления на этой частоте, поэтому потери в несколько децибел не сильно скажутся на работе усилителя. Проводящие дорожки на плате вырезал с помощью штихеля (полукруглая стамеска, сделанная из швейной иглы), подстраиваясь под габариты ЧИПовских конденсаторов и резисторов, по возможности уменьшая площади проводящих дорожек и увеличивая расстояние между ними. Края платы пропаяны луженой медной лентой, соединяющей верхнюю сторону с нижней. Рядом с транзистором просверлил два отверстия, в которых распаивается провод, соединяющий две стороны платы и обеспечивающий двухстороннюю металлизацию.


    Фотографии получаются плохие. Попробую нарисовать эскиз печатного монтажа.


    Рис. 2. Эскиз монтажа.

    Все катушки наматываются медным эмалированным проводом диаметром 0,5 мм на сверледиаметром 2 мм. L 1 – L 7 – четыре витка, L 8 – L 9 –два витка. Катушки бескаркасные, намотка шаговая. Дроссели L 10 – L 11 с индуктивностью 220 мкгн, используются готовые или делаются самодельные путём намоткой 15 витков провода диаметром 0,1 мм на малогабаритном резисторе 50 -100 кОм.

    Антенный усилитель цифрового приёма телевидения на полевом транзисторе ATF54143 (аналог SAV-541+).

    Прищуриваясь к показанию приборов можно сказать, что усилитель на полевом транзисторе ATF54143 (аналог SAV-541+) лучше. На этих частотах его коэффициент шума составляет от 0,2 до 0,3 дБ, а усиление получилось на 5 дБ больше, но на практике особой разницы не заметите.

    Его схема питания несколько сложнее. В конкретном случае опробована одна из простых схем включения данного транзистора. Уровень шума, линейность и усиление будут зависеть от выбранного режима питания. В приведённой схеме, найден компромисс между перечисленными характеристиками. В остальном, по назначению элементов и по конструкции, схема не отличается от предыдущей.

    Параметры усилителя.

    Полоса пропускания 490 – 600 МГц.

    Коэффициент усиления 20 дБ.

    Ток потребления 30 мА.

    В этой статье я расскажу о применение своих усилителей на даче и в городе при приёме цифрового телевидения. В условиях дальнего приёма лучшими показателями обладает схема на двух полевых транзисторах Рис 4.

    Поскольку схема обладает достаточно высоким коэффициентом усиления (до 35 дБ), в неё добавлены дополнительные детали, повышающие устойчивость к самовозбуждению.

    На фото 6 фрагмент макета преселектора приёмника кибернетического устройства, работающего в условиях сильных помех.

    На аналогичной монтажной плате я смонтировал усилитель, используя ЧИП компоненты, заменив промышленный узкополосный фильтр дискретными катушками и конденсаторами.

    Этот усилитель с простенькой самодельной антенной справился с поставленной задачей.

    На рис. 5 приведена ещё одна схема фильтра нижних частот антенного усилителя для эфирного цифрового вещания других регионов, где граничная полоса пропускания составляет 722 МГц. Этот фильтр ставится по выходам одного или двух транзисторов. Его можно использовать отдельно на выходе купленного усилителя. Задача этого фильтра подавить помехи ретрансляторов сотовой связи и мобильных телефонов.

    В случае нижней граничной частоты 650 МГц рекомендую уменьшить значения емкостей конденсаторов фильтра верхних частот (ФВЧ, который стоит по входу усилителя) с 9,1 до 6,2 пФ. Эти конденсаторы, стоящие параллельно катушкам L 4, L 5, в совокупности с ними, образуют фильтры пробки, гасящие помехи от ретрансляторов сотовой связи на частотах около 470 МГц.

    Дополнением этого поста послужил первый комментарий.

    Мне принесли две готовые покупные платы антенных усилителей, просто посмотреть какое усиление, к примеру, они имеют на цифровых частотах приёма. У хозяина этих изделий были проблемы при приёме эфирного цифрового телевидения в городской квартире, а коллективная антенна работала крайне плохо.


    Плата на фото 7 обеспечивала коэффициент усиления во всём диапазоне частот от 50 - 800 МГц равный чуть более 20 дБ, но имела провал в 10 дБ исключительно в цифровом диапазоне 500 – 600 МГц. Чтобы избавиться от провала пришлось ввести дополнительную коррекцию частотной характеристики. Это спиральная катушка в коллекторе первого транзистора и П- фильтр нижних частот, включённый последовательно по сигналу между транзисторами. Таким образом, удалось выделить по усилению исключительно участок эфирного цифрового приёма, что улучшило сигнал / шум на этомдиапазоне. Уровень сигнала после такой модернизации возрос на 20 процентов.





    Хозяин платы на рис. 7 остался доволен, наградив меня картинкой со своего телевизора. Теперь его усилитель усиливает сигнал с антенной решётки

    Остаётся жалеть, что широкая полоса усиления снижает помехоустойчивость приёмного тракта, зато открыта возможность для радиолюбительского творчества, например, добавления полосового фильтра.

    Потом принесли ещё один усилитель.

    Плату на фото 12 я не рекомендую использовать, поскольку она имеет склонность к самовозбуждению. Это связано с конструктивной особенностью печатной платы, где земляные проводники выполнены тонкими дорожками, что неприемлемо для СВЧ монтажа.
    Понравилось? Лайкни нас на Facebook