Электрические токи высокого напряжения частоты. Физические основы токов высокой частоты. Токи высокой частоты в медицине

Переменным называют ток, периодически меняющийся по величине и направлению. В течение одного колебания сила тока нарастает до максимума, затем спадает до нуля, меняя направление на обратное, снова нарастает до максимума и опять достигает нулевого значения.

Отрезок времени (Т), в течение которого происходит одно колебание, называется периодом. Величина, обратная периоду, т. е. 1/Т, носит название частоты. Если период



Т выражен в секундах, то частота - это количество колебаний в секунду. Частота, соответствующая одному колебанию в секунду, принята за единицу и в честь физика Herz получила название герц (гц).

Если колебание совершается по закону синуса, то графическим изображением колебательного процесса является синусоида. Такие колебания получили название гармонических.

При прохождении переменного тока по проводнику вокруг последнего возникают электромагнитные колебания, распространяющиеся в пространстве во всех направлениях; они образуют электромагнитные волны. Электромагнитные волны распространяются в пустоте со скоростью света - 300 000 км/сек (3*10 10 см/сек), а в различных средах с несколько меньшей скоростью.

Расстояние, которое проходит электромагнитная волна за время одного периода, называют длиной волны.

В настоящее время электромагнитные волны так называемой радиочастоты делят на длинные - 3000 м и больше, средние - от 3000 до 200 м, промежуточные - от 200 до 50 м, короткие - от 50 до 10 м, ультракороткие - менее 10 л, а последние на метровые - от 10 до 1 м, дециметровые - от 1 м до 10 см и сантиметровые - от 10 до 1 см.

Токи любой частоты, в том числе высокой, получают с помощью колебательного контура, который состоит из конденсатора (электрической емкости - С) и индуктивности (проволочной катушки - L, при токах высокой частоты без железного сердечника).

Если конденсатору колебательного контура сообщить заряд, то он начинает разряжаться через индуктивность: при этом вокруг нее за счет энергии тока возникает магнитное поле. Когда конденсатор полностью разрядится, ток должен прекратиться, но по мере того, как ток ослабевает, энергия магнитного поля, накопленная в индуктивности, переходит обратно в ток того же направления; в результате конденсатор снова зарядится, но знак заряда на его обкладках изменится на обратный. Получив заряд, конденсатор снова начинает разряжаться через индуктивность, но ток его разрядки будет уже противоположного направления. Прохождение тока через индуктивность будет снова сопровождаться возникновением магнитного поля, энергия которого по мере ослабления разрядного тока будет переходить в энергию наведенного тока того же направления. Обкладки конденсатора окажутся снова заряженными, и заряд их будет того же знака, что и вначале. Энергия, накопленная теперь в конденсаторе, меньше первоначальной, так как часть ее уходит на преодоление омического сопротивления контура. Идя сначала в одном направлении, а затем в обратном, ток разрядки конденсатора совершает одно колебание.

Получив снова заряд, хотя и меньший первоначального, конденсатор снова начнет разряжаться через индуктивность. С каждым колебанием амплитуда тока будет уменьшаться. Это будет продолжаться до тех пор, пока вся энергия, накопленная в конденсаторе, не израсходуется на преодоление омического сопротивления контура и частично на излучение электромагнитных волн - возникает группа затухающих колебаний. Для того чтобы колебания были малозатухающими или незатухающими, необходимо периодически подавать энергию в колебательный контур, восполнять ее потери. В современных медицинских аппаратах высокой частоты это осуществляется с помощью электронных ламп, применяемых в генераторных схемах.

Наиболее простой генераторной лампой является триод. Он имеет 3 электрода: катод, управляющую сетку и анод. При накале катод выделяет электроны. Если подать на анод положительный потенциал, а на катод отрицательный, то между анодом и катодом возникает электрическое поле, под влиянием которого отрицательно заряженные электроны притягиваются к аноду, имеющему положительный потенциал. Проникая между витками управляющей сетки, расположенной между катодом и анодом, электроны достигают анода, в результате чего в цепи анода проходит ток. Управляющая сетка расположена ближе к катоду и оказывает на электроны более сильное воздействие, чем анод. Когда на управляющей сетке имеется положительный потенциал, движение электронов ускоряется - в единицу времени большее число их попадает на анод, ток усиливается; когда же на сетке имеется отрицательный потенциал, она отталкивает электроны, не пропуская их к аноду - анодный ток становится слабее.

Триод имеет ряд недостатков, а это заставило перейти к более совершенным лампам - тетродам, лучевым тетродам, пентодам и др. Эти лампы применяют в медицинских высокочастотных генераторах, работающих на самовозбуждении с обратной связью.

Анодный ток, проходящий в цепи генераторной лампы, заряжает конденсатор колебательного контура, что ведет к возникновению электрических колебаний в анодном колебательном контуре. Колебания тока создают в катушке индуктивности колебательного контура переменное магнитное поле, силовые линии которого пересекают витки рядом расположенной катушки индуктивности управляющей сетки, наводя на ней переменные потенциалы. В результате этого колебательный контур в цепи анода через связь с сеткой лампы начинает управлять питающим его анодным током. Такая связь называется обратной. При наличии обратной связи (если включить питание в генератор) в анодном колебательном контуре возникают колебания, генератор самовозбуждается. Таков принцип работы генератора на самовозбуждении.

Практически в аппаратах высокой и ультравысокой частоты устройство колебательного контура значительно сложнее. В аппаратах высокой частоты первоначально колебания возникают в маломощном задающем генераторе. Возникающие в нем колебания передаются обычно индуктивным путем в промежуточный усилитель, а затем в выходной усилитель, собранный на более мощных лампах. Принцип усиления заключается в том, что колебания с предыдущего контура поступают на управляющие сетки более мощных ламп последующего контура, что ведет к увеличению мощности колебаний.

Терапевтический контур, который служит для проведения лечебной процедуры, связан с предыдущим контуром, который обычно представляет собой выходной усилитель только индуктивно, чтобы обезопасить больного от высокого напряжения, под которым находятся предыдущие контуры.

Все контуры должны быть настроены в резонанс, т. е. на одну и ту же частоту. При этом переход энергии из одного контура в другой осуществляется наиболее полно.

Раньше для получения токов высокой частоты пользовались искровыми генераторами. В настоящее время они сняты с производства, так как не генерируют стабильной частоты, что создает радиопомехи.

Всякому электрическому току, в том числе высокочастотному, свойственно тепловое действие. Это тепло возникает внутри тканей, а потому получило название эндогенного в отличие от экзогенного, когда тепло проникает в ткани снаружи, как это происходит при воздействии лечебной грязи, парафина, грелки.

Для того чтобы понять причину появления тепла внутри тканей при токах высокой частоты, необходимо разобрать механизм их прохождения через ткани. В тканевых жидкостях и внутри клеток имеются ионы, преимущественно натрия и хлора, на которые диссоциирует основная соль, содержащаяся в организме, - хлористый натрий. Кроме ионов натрия и хлора, в организме в меньшем количестве присутствуют и другие ионы (кальция, магния, фосфора и т. п.), а также содержатся белковые молекулы, несущие на себе электрический заряд.

Кроме заряженных частиц, в тканях организма находятся полярные молекулы (диполи), у которых электрические заряды внутри молекулы смещены и можно различать два полюса - положительный и отрицательный. К дипольным молекулам (диполям) относятся, в частности, молекулы воды.

При подведении к тканям организма высокочастотного напряжения в них в пространстве между электродами возникает высокочастотное электрическое поле. Под его влиянием все заряженные частицы приходят в движение: отрицательные направляются к положительному, положительные - к отрицательному полюсу. Дипольные молекулы начинают поворачиваться вдоль поля, чтобы отрицательным полюсом быть обращенными в сторону положительно заряженного, положительным - в сторону отрицательно заряженного электрода.



Едва ионы и другие заряженные частицы успеют сдвинуться с места, как меняется направление электрического поля, что заставляет их изменить направление движения на обратное. С каждым периодом высокочастотного тока процесс этот будет повторяться. Заряженные частицы начнут колебаться с очень малой амплитудой около среднего положения с частотой колебаний высокочастотного тока. Такой ток, при котором возникает движение заряженных частиц, в данном случае колебательное, носит название тока проводимости.

При своих колебательных движениях заряженные частицы встречают сопротивление как при столкновении друг с другом, так и с окружающими частицами тканей, что сопровождается образованием тепла. Поворот дипольных молекул тоже встречает сопротивление со стороны окружающих частиц и сопровождается выделением тепла (так называемые диэлектрические потери). Поворот в высокочастотном электрическом поле диполей, несущих на концах заряды, носит название тока смещения (поляризации). Ткани человеческого тела обладают электрической емкостью и омическим сопротивлением, включенными параллельно, что схематически представлено на рис. 40. Индуктивное сопротивление у тканей практически отсутствует.

Клеточные мембраны являются диэлектриками, хотя и несовершенными, а межтканевые жидкости и протоплазма клеток имеют ионную проводимость. В результате возникают микроскопические конденсаторы (два проводника, разделенные слоем диэлектрика). Общая емкость человеческого тела довольно значительна и составляет 0,01-0,02 мкф.

При относительно небольших частотах (для токов высокой частоты до нескольких миллионов герц в секунду) преобладает ионная электропроводность, возникает ток проводимости, при больших же частотах (несколько десятков миллионов герц) увеличивается ток поляризации. При сверхвысоких частотах, превышающих 1 млрд. гц, ток поляризации возрастает еще больше, выраженнее становятся явления, которые относят за счет осцилляторного (колебательного) действия токов высокой частоты; к ним принадлежат физико-химические сдвиги, в частности увеличение дисперсности белков. Ионный состав и число полярных молекул в разных тканях отличаются друг от друга, поэтому при одной и той же частоте, а следовательно, и длине волны в тканях будет возникать неодинаковое количество тепла. Фактически будут греться все ткани, хотя несколько больше та, для которой длина волны ближе лежит к селективной (избирательной). По Н. Н. Малову, избирательной для мышц является длина волны 2,1 м, для крови - 2,6 м, для кожи - 6 м, для печени - 5,5 м, для мозга - 11 м, для жира - 35 м. Следует отметить, что частота и соответственно длина волны колебаний, генерируемых современными медицинскими аппаратами высокой частоты, не являются достаточно селективными для тканей человеческого тела. Несмотря на это, различие в нагревании тканей проявляется в той или иной степени. Вследствие очень малого сдвига ионов от среднего положения во время колебательных движений не происходит выраженного изменения концентрации ионов на границе клеточных мембран как вне, так и внутри клетки; этим можно объяснить отсутствие раздражающего действия высокочастотного тока на ткани.

Болевая чувствительность при действии токов высокой частоты уменьшается, что в основном не зависит от возникающего тепла, а является результатом осцилляторного колебательного эффекта токов высокой частоты. Возможно, что при этом нарушается связь между элементами нервного окончания, воспринимающего боль, что ведет к понижению его возбудимости; чем выше частота тока, тем более выражено его болеутоляющее действие.

Никола Тесла. Первая отечественная биография Ржонсницкий Борис Николаевич

Глава шестая Токи высокой частоты. Резонанс-трансформатор. Безопасен ли электрический ток? Лекция Теслы о токах высокой частоты

Глава шестая

Токи высокой частоты. Резонанс-трансформатор. Безопасен ли электрический ток? Лекция Теслы о токах высокой частоты

По утверждению Теслы, год, проведенный им в Питсбурге, был потерян для исследовательских работ в области многофазных токов. Возможно, что это утверждение близко к истине, но возможно и то, что именно этот год стал началом дальнейших творческих успехов изобретателя. Дискуссия с инженерами завода Вестингауза не прошла бесследно. Обоснование предложенной им частоты переменного тока в 60 периодов требовало более тщательного анализа экономической эффективности применения как меньших, так и более высоких частот. Научная добросовестность Теслы не позволяла ему оставить этот вопрос без тщательной проверки.

Возвратившись в 1889 году из Европы, он принялся за конструирование генератора переменного тока большой частоты и вскоре создал машину, статор которой состоял из 348 магнитных полюсов. Этот генератор давал возможность получать переменный ток с частотой в 10 тысяч периодов в секунду. Вскоре ему удалось создать и еще более высокочастотный генератор и начать изучение различных явлений при частоте 20 тысяч периодов в секунду.

Исследования показали, что по мере увеличения частоты переменного тока можно значительно уменьшить объем железа в электромагнитных электродвигателях, а начиная с определенной частоты, можно создавать электромагниты, состоящие из одних только обмоток, вообще без железа в катушках. Двигатели, созданные из таких электромагнитов без железа, были бы чрезвычайно легкими, но во многих других отношениях неэкономичны, и уменьшение затрат металла не окупалось бы из-за значительного увеличения потребления электроэнергии.

Исследуя широкий диапазон частот переменного тока первоначально в пределах, которые могли бы быть применены в многофазной системе (25-200 периодов в секунду), Тесла вскоре перешел к изучению свойств и возможностей практического использования токов повышенных (10–20 тысяч периодов в секунду) и высоких (20-100 тысяч периодов в секунду) частот. Для получения значительно большего числа периодов и значительно более высоких напряжений, чем это могло быть достигнуто созданными им генераторами токов высокой частоты, необходимо было найти и опереться на иные принципы.

Хорошо знакомый с мировой литературой по электрофизике и электротехнике, Тесла изучил работу знаменитого американского физика Джозефа Генри, высказавшего еще в 1842 году предположение, что при некоторых электрических разрядах (в том числе и разряде лейденской банки) имеются не только «главные разряды», но и встречные, причем каждый последующий несколько слабее предыдущего. Так было впервые замечено существование затухающего двухстороннего электрического разряда.

Тесла знал и о том, что спустя одиннадцать лет после Генри английский физик лорд Кельвин экспериментально доказал, что электрический разряд конденсатора есть процесс двухсторонний, продолжающийся до тех пор, пока энергия его не будет израсходована на преодоление сопротивления среды. Частота этого двухстороннего процесса достигает 100 миллионов колебаний в секунду. Искра между шариками разрядника, кажущаяся однородной, в действительности состоит из нескольких миллионов искр, проходящих в короткий промежуток времени в обе стороны.

Кельвин дал математическое выражение процесса двухстороннего разряда конденсатора. Позднее Феддерсон, Шиллер, Кирхгоф, Гельмгольц и другие исследователи не только проверили правильность этого математического выражения, но и значительно дополнили теорию электрического разряда.

Знаком был Тесла и с работами Антона Обербанка, наблюдавшего явление электрического резонанса, то есть процесс резкого возрастания амплитуды (размаха) колебаний при приближении частоты внешнего колебания к частоте собственных внутренних колебаний системы.

Хорошо известны были ему и опыты Герца и Лоджа, занимавшихся изучением электромагнитных волн. Особенно большое впечатление на Теслу произвели эксперименты Генриха Герца, подтвердившие теоретические предположения Джеймса К. Максвелла о волновой природе электромагнитных явлений. Надо заметить, что в работах Герца Тесла впервые нашел указание на явление так называемых «стоячих электромагнитных волн», то есть волн, накладывающихся одна на другую так, что они в одних местах усиливают друг друга, создавая «пучности», а в других уменьшают до нуля, создавая «узлы».

Зная все это, Никола Тесла в 1891 году закончил конструирование прибора, сыгравшего исключительную роль в дальнейшем развитии самых различных отраслей электротехники и особенно радиотехники. Для создания токов высокой частоты и высокого напряжения он решил воспользоваться известным свойством резонанса, то есть явлением резкого возрастания амплитуды собственных колебаний какой-либо системы (механической или электрической) при наложении на них внешних колебаний с той же частотой. На основании этого известного явления Тесла создал свой резонанс-трансформатор.

Действие резонанс-трансформатора основано на настройке в резонанс его первичного и вторичного контуров. Первичный контур, содержащий как конденсатор, так и индукционную катушку, позволяет получить переменные токи весьма высокого напряжения с частотами в несколько миллионов периодов в секунду. Искра между шариками разрядника вызывает быстрые изменения магнитного поля вокруг первичной катушки вибратора. Эти изменения магнитного поля вызывают возникновение соответствующего высокого напряжения в обмотке вторичной катушки, состоящей из большого числа витков тонкой проволоки, причем частота переменного тока в ней соответственно количеству искровых разрядов достигает нескольких миллионов перемен в секунду.

Наибольшей величины частота достигает в момент, когда периоды первичной и вторичной цепи совпадают, то есть когда наблюдается явление резонанса в этих цепях.

Тесла разработал очень простые методы автоматической зарядки конденсатора от источника тока низкого напряжения и разрядки его через трансформатор с воздушным сердечником. Теоретические расчеты изобретателя показали, что даже при самых незначительных величинах емкости и индукции в созданном им резонанс-трансформаторе при соответствующей настройке можно получить путем резонанса весьма высокие напряжения и частоты.

Открытые им в 1890 году принципы электрической настройки резонанс-трансформатора и возможность изменять емкость для изменения длины волны электромагнитных колебаний, создаваемых трансформатором, стали одним из наиболее важных оснований современной радиотехники, а мысли Теслы об огромной роли конденсатора и вообще емкости и самоиндукции в развитии электротехники оправдались.

Резонанс-трансформатор Теслы: Е - батарея или другой источник тока. J - индукционная катушка. ВВ - искровой разрядник. СС - батарея лейденских банок. L1 - первичная катушка трансформатора. L2 - вторичная катушка трансформатора. К - механический прерыватель. На нижнем рисунке катушки L1 и L2 погружены в масло.

При создании резонанс-трансформатора пришлось решить еще одну практическую задачу: найти изоляцию для катушек сверхвысокого напряжения. Тесла занялся вопросами теории пробоя изоляции и на основании этой теории нашел лучший способ изолировать витки катушек - погружать их в парафиновое, льняное или минеральное масло, называемое теперь трансформаторным. Позднее Тесла еще раз возвратился к разработке вопросов электрической изоляции и сделал весьма важные выводы из своей теории.

Едва начав опыты с токами высокой частоты, Никола Тесла ясно представил себе огромные перспективы, открывавшиеся перед человечеством при широком использовании токов высокой частоты. Было бы значительным преувеличением утверждать, что уже тогда он видел все частные случаи их применения в том виде, в каком это имеет место в настоящее время, но само направление работ Теслы свидетельствует о необычайно разносторонних выводах, которые он сделал из своего открытия.

Прежде всего он пришел к убеждению, что электромагнитные волны играют исключительно важную роль в большинстве явлений природы. Взаимодействуя друг с другом, они либо усиливаются, либо ослабляются, либо вызывают новые явления, происхождение которых мы иногда приписываем совершенно другим причинам. Но не только электромагнитные излучения играют огромную роль в самых различных явлениях природы. Тесла интуицией большого ученого понял значение различных излучений еще до замечательных открытий радиоактивных элементов. Когда позднее, в 1896 году, Анри Беккерель, а затем Пьер и Мария Кюри открыли это явление, Тесла нашел в этом подтверждение своих предвидений, высказанных им еще в 1890 году.

Огромное значение переменных токов в развитии промышленности, получившей наконец необходимый ей электродвигатель, стало ясно Николе Тесле при первом же знакомстве с преимуществами трехфазного тока, требующего для его передачи всего лишь три провода. Для Теслы уже в то время было несомненно, что должен быть открыт способ передачи электроэнергии и вовсе без проводов, с помощью электромагнитных волн. Эта проблема привлекла внимание Теслы, стала предметом его занятий еще в конце 1889 года.

Однако практическое применение токов высокой частоты для самых разнообразных целей требовало изучения на первый взгляд самых различных, не связанных между собой вопросов. Эти-то эксперименты в широком масштабе и начал проводить в своей лаборатории Никола Тесла.

Начав систематические опыты с токами высокой частоты и высокого напряжения, Тесла должен был прежде всего разработать меры защиты от опасности поражения электрическим током. Эта частная, вспомогательная, но весьма важная задача привела его к открытиям, заложившим основу электротерапии - обширной области современной медицины.

Ход мыслей Николы Теслы был чрезвычайно оригинален. Известно, рассуждал он, что постоянный ток низкого напряжения (до 36 вольт) не оказывает вредных действий на человека. По мере повышения напряжения возможность поражения быстро возрастает. С увеличением напряжения, поскольку сопротивление тела человека практически неизменно, сила тока также увеличивается и достигает при 120 вольтах угрожающей величины. Более высокое напряжение становится опасным для здоровья и жизни людей.

Иное дело ток переменный. Для него предел опасного напряжения значительно выше, чем для постоянного, и этот предел отодвигается с повышением частоты. Известно, что электромагнитные волны очень высокой частоты не оказывают никакого болезненного действия на человека. Пример тому свет, воспринимаемый при нормальной яркости здоровым глазом без всяких болезненных ощущений. В пределах каких же частот и напряжений переменный ток опасен? Где начинается зона безопасного тока?

Шаг за шагом исследовал Тесла действие переменного электрического тока на человека при разных частотах и напряжениях. Опыты он проводил на самом себе. Сначала через пальцы одной руки, затем через обе руки, наконец, через все тело пропускал он токи высокого напряжения и высокой частоты. Исследования показали, что действие электрического тока на человеческий организм складывается из двух составляющих: воздействия тока на ткани и клетки нагревом и непосредственного воздействия тока на нервные клетки.

Оказалось, что нагревание далеко не всегда вызывает разрушительные и болезненные последствия, а воздействие тока на нервные клетки прекращается при частоте свыше 700 периодов, аналогично тому, как слух человека не реагирует на колебания свыше 2 тысяч в секунду, а глаз - на колебания за пределами видимых цветов спектра.

Так была установлена безопасность токов высоких частот даже при высоких напряжениях. Более того, тепловые действия этих токов могли быть использованы в медицине, и это открытие Николы Теслы нашло широкое применение; диатермия, лечение УВЧ и другие методы электротерапии есть прямое следствие его исследований. Тесла сам разработал ряд электротермических аппаратов и приборов для медицины, получивших большое распространение как в США, так и в Европе. Его открытие было затем развито другими выдающимися электриками и врачами.

Однажды, занимаясь опытами с токами высокой частоты и доведя напряжение их до 2 миллионов вольт, Тесла случайно приблизил к аппаратуре медный диск, окрашенный черной краской. В то же мгновение густое черное облако окутало диск, и тотчас поднялось вверх, а сам диск заблестел, словно чья-то невидимая рука соскоблила всю краску и отполировала его.

Удивленный Тесла повторил опыт, и снова краска исчезла, а диск сиял, поддразнивая ученого. Повторив десятки раз опыты с разными металлами, Тесла понял, что он открыл способ их очистки токами высокой частоты.

«Любопытно, - подумал он, - а не подействуют ли эти токи и на кожу человека, не удастся ли с их помощью снимать с нее различные, трудно поддающиеся удалению краски».

И этот опыт удался. Кожа руки, окрашенная краской, мгновенно стала чистой, как только Тесла внес ее в поле токов высокой частоты. Оказалось, что этими токами можно удалять с кожи лица мелкую сыпь, очищать поры, убивать микробов, всегда в изобилии покрывающих поверхность тела человека.

Тесла считал, что его лампы оказывают особое благотворное действие не только на сетчатку глаза, но и на всю нервную систему человека. К тому же лампы Теслы вызывают озонирование воздуха, что также может быть использовано в лечении многих болезней. Продолжая заниматься электротерапией, Тесла в 1898 году сделал обстоятельное сообщение о своих работах в этой области на очередном конгрессе Американской электротерапевтической ассоциации в Буффало.

В лаборатории Тесла пропускал через свое тело токи напряжением в 1 миллион вольт при частоте 100 тысяч периодов в секунду (ток достигал при этом величины в 0,8 ампера). Но, оперируя с токами высокой частоты и высокого напряжения, Тесла был очень осторожен и требовал от своих помощников соблюдения всех им самим выработанных правил безопасности. Так, при работе с напряжением в 110-50 тысяч вольт при частоте в 60-200 периодов он приучил их работать одной рукой, чтобы предотвратить возможность протекания тока через сердце. Многие другие правила, впервые установленные Теслой, прочно вошли в современную технику безопасности при работе с высоким напряжением.

Создав разнообразную аппаратуру для производства опытов, Тесла в своей лаборатории начал исследование огромного круга вопросов, относящихся к совершенно новой области науки, в которой его больше всего интересовали возможности практического использования токов высокой частоты и высокого напряжения. Работы его охватывали все многообразие явлений, начиная от вопросов генерирования (создания) токов высокой частоты и кончая детальным изучением различных возможностей их практического использования. С каждым новым открытием возникали все новые и новые проблемы.

Как одна из частных задач Теслу заинтересовала возможность использовать открытие Максвеллом и Герцем электромагнитной природы света. У него возникла мысль: если свет представляет собой электромагнитные колебания с определенной длиной волны, нельзя ли искусственно получить его не путем нагрева нити электрической лампы накаливания (что дает возможность использовать лишь 5 процентов энергии, превращающейся в световой поток), а путем создания таких колебаний, которые вызвали бы появление световых волн? Эта задача и стала предметом исследований в лаборатории Теслы в начале 1890 года.

Вскоре он накопил огромное количество фактов, позволивших перейти к обобщениям. Однако осторожность Теслы заставила его проверять десятки и сотни раз каждое свое утверждение. Он повторял сотни раз каждый опыт, прежде чем делал из него какие-либо выводы.

Необычайность всех открытий Николы Теслы и огромный авторитет его привлекли внимание руководителей Американского института электроинженеров, вновь, как и три года назад, пригласивших Теслу прочесть лекцию о своих работах. Тесла избрал тему: «Опыты с переменными токами весьма высокой частоты и их использование для искусственного освещения».

По традиции, установившейся с первых лет существования института, было разослано ограниченное число приглашений лишь самым выдающимся электротехникам. Перед такой избранной аудиторией 20 мая 1892 года Тесла и прочел одну из своих самых вдохновенных лекций и продемонстрировал опыты, уже осуществленные им в своей лаборатории.

Нет ничего, что в большей степени могло бы привлечь внимание человека и заслужило бы быть предметом изучения, чем природа. Понять ее огромный механизм, открыть ее созидательные силы и познать законы, управляющие ею, - величайшая цель человеческого разума, - этими словами начал Тесла свое выступление.

И вот он уже демонстрирует перед слушателями результаты своих исследований в новой, еще никем не изученной области токов высокой частоты.

Рассеяние электромагнитной энергии в пространстве, окружающем источник токов высокой частоты, позволяет использовать эту энергию для самых различных целей, - убежденно говорит ученый и тут же показывает замечательный опыт. Он выдвигает гениальное положение о возможности передачи электроэнергии без проводов и в доказательство заставляет как обычные лампы накаливания, так и специально им созданные лампы без нитей внутри светиться, внося их в переменное электромагнитное поле высокой частоты. - Освещение лампами подобного рода, - говорит Тесла, - где свет возникает не под действием нагрева нитей протекающим током, а вследствие особых колебаний молекул и атомов газа, будет проще, чем освещение современными лампами накаливания. Освещение будущего, - подчеркивал ученый, - это освещение токами высокой частоты.

Особенно подробно остановился Тесла на описании своего резонанс-трансформатора как источника волн весьма высокой частоты и снова подчеркнул значение разряда конденсатора в создании таких колебаний. Тесла правильно оценил большое будущее этой важнейшей детали современных радиотехнических средств. Он выразил эту мысль следующими словами:

Я думаю, что разряд конденсатора будет в будущем играть важную роль, так как он не только предоставит возможность получать свет более простым способом в том смысле, какой указывает изложенная мною теория, но окажется важным и во многих других отношениях.

Подробно изложив результаты экспериментов с токами высокой частоты, получаемыми с помощью резонанс-трансформатора, Тесла завершил лекцию словами, свидетельствующими о его ясном представлении значения дальнейшего изучения явлений, над которыми его работы едва приоткрыли завесу тайны:

Мы проходим с непостижимой скоростью через бесконечное пространство; все окружающее нас находится в движении, и энергия есть повсюду. Должен найтись более прямой способ утилизировать эту энергию, чем известные в настоящее время. И когда свет получится из окружающей нас среды, и когда таким же образом без усилий будут получаться все формы энергии из своего неисчерпаемого источника, человечество пойдет вперед гигантскими шагами.

Одно созерцание этой великолепной перспективы подымает наш дух, укрепляет нашу надежду и наполняет наши сердца величайшей радостью.

Под бурные аплодисменты Тесла закончил свое замечательное выступление. Необычайность всего показанного и особенно смелые выводы ученого, видевшего революционные последствия своих открытий, поразили слушателей, хотя далеко не все поняли содержание лекции так глубоко, как того хотелось бы Николе Тесле.

Из книги Хронолого-эзотерический анализ развития современной цивилизации. Книга 4. За семью печатями автора Сидоров Георгий Алексеевич

Из книги Сияние Вышних Богов и крамешники автора Сидоров Георгий Алексеевич

Глава 11. Частоты коллективного сознания Ты видишь, какая стоит погода. Скоро подкатит к шестидесяти восьми, а снега мало. Если бы не печь, то углы нашего скита, - показал старик на стены избушки, - давно бы побелели. Дед Мороз совсем рассвирепел. Обычно морозяка долго не

Из книги Математическая хронология библейских событий автора Носовский Глеб Владимирович

1. Частоты упоминания собственных имён в Библии В Библии содержится несколько десятков тысяч упоминаний имён. Известно, что в Библии есть две серии дубликатов: каждое поколение, описанное в книгах 1 Царств, 2 Царств, 3 Царств, 4 Царств, затем повторно описано в книгах 1

Из книги От Скифии до Индии [Древние арии: мифы и история] автора Бонгард-Левин Григорий Максимович

ВЕРШИНЫ ВЫСОКОЙ ХАРЫ До самого неба возвышается Хара; вокруг ее вершины совершают движение солнце, луна и звезды. «Взойди, взойди, быстроконное солнце, над Высокой Харой, даруй свой свет земному миру… взойди, взойди, месяц, над Высокой Харой, даруй свой свет земному миру…

Из книги Московские загадки автора Молева Нина Михайловна

Гнездо поэзии высокой «Это истинный ваш род; наконец вы нашли это» – слова нового знакомца звучали приговором и надеждой. Слова известного поэта и баснописца о первом опыте не слишком удачливого собрата по перу: Ивана Ивановича Дмитриева о двух первых баснях Крылова.

автора Фредди

XIX. По миру Высокой моды Я достаточно много говорила о торжественных премьерах, которыми отмечается дебют коллекций, чтобы специально к ним не возвращаться. Только представьте, у нас проходит почти сотня спектаклей в год. Все дефиле похожи одно на другое. Почти везде

Из книги Тайны парижских манекенщиц [сборник] автора Фредди

Фредди За кулисами парижской Высокой моды Воспоминания манекенщицы-звезды, записанные Жаном

Из книги Троя автора Шлиман Генрих

Примечание XV Избиение троянцев Патроклом между кораблями, рекой и высокой стеной приморского лагеря Среди множества доводов, приведенных в «Илионе» на с. 149–150, чтобы доказать, что Гомер представлял себе греческий лагерь слева, или на западной стороне Скамандра, а не на

Из книги Бдительность – наше оружие автора Коллектив авторов

«Правда», 31 января 1953 года, передовая статья. ВОСПИТЫВАТЬ ТРУДЯЩИХСЯ В ДУХЕ высокой ПОЛИТИЧЕСКОЙ БДИТЕЛЬНОСТИ Советский народ, руководимый партией Ленина – Сталина, добивается всё новых и новых успехов в коммунистическом строительстве.XIX съезд партии подвёл итоги

Из книги Трактат о вдохновенье, рождающем великие изобретения автора Орлов Владимир Иванович

Из книги Разум и цивилизация [Мерцание в темноте] автора Буровский Андрей Михайлович

Следы высокой цивилизации? Не буду даже отрицать возможности посещения Земли инопланетянами – оно более чем вероятно. Но Ворота Солнца и Тиауанако в целом никак не годятся на роль «города инопланетян». Концы с концами не сходятся.А вот что-то невероятно древнее в

автора

Глава восемнадцатая Торжества на родине. Несчастный случай и его последствия. Болезнь Теслы. Вторая мировая война. Отпор фашизму - дело всех славян. Первая гвардейская имени Теслы 10 июля 1936 года Николе Тесле исполнилось восемьдесят лет. Этот юбилей был торжественно

Из книги Никола Тесла. Первая отечественная биография автора Ржонсницкий Борис Николаевич

автора Петракова Анна Евгеньевна

Тема 12 Скульптура Древней Греции эпохи высокой классики Периодизация Искусства Древней Греции (гомеровский, архаика, классика, эллинизм), краткая характеристика каждого периода и его места в истории искусства Древней Греции. Разделение классики на раннюю, высокую и

Из книги Искусство Древней Греции и Рима: учебно-методическое пособие автора Петракова Анна Евгеньевна

Тема 15 Архитектура высокой (вне Афин) и поздней (вне Афин и в Афинах) классики в Древней Греции Периодизация Искусства Древней Греции (гомеровский, архаика, классика, эллинизм), краткая характеристика каждого периода и его места в истории искусства Древней Греции.

Из книги Предыстория под знаком вопроса (ЛП) автора Габович Евгений Яковлевич

Гимн высокой культуре предысторического общества Предрассудок! Он обломок древней правды. Храм упал; а руин его, потомок языка не разгадал Баратынский Наряду с анализом сохранившихся древних языков существует еще и другой путь познания умственного мира человека

В гидромеханических системах, устройствах и узлах чаще всего используются детали, которые работают на трение, сдавливание, скрутку. Именно поэтому основное требование к ним – достаточная твердость их поверхности. Для получения необходимых характеристик детали, поверхность закаляется током высокой частоты (ТВЧ).

В процессе применения закалка ТВЧ показала себя как экономный и высокоэффективный способ термической обработки поверхности металлических деталей, который придает дополнительную износостойкость и высокое качество обработанным элементам.

Нагрев токами ВЧ основан на явлении, при котором вследствие прохождения переменного высокочастотного тока по индуктору (спиральный элемент, выполненный из медных трубок) вокруг него формируется магнитное поле, создающее в металлической детали вихревые токи, которые и вызывают нагрев закаливаемого изделия. Находясь исключительно на поверхности детали, они позволяют нагреть ее на определенную регулируемую глубину.

Закалка ТВЧ металлических поверхностей имеет отличие от стандартной полной закалки, которое заключается в повышенной температуре нагрева. Это объясняется двумя факторами. Первый из них – при высокой скорости нагрева (когда перлит переходит в аустенит) уровень температуры критических точек повышается. А второй – чем быстрее проходит переход температур, тем быстрее совершается превращение металлической поверхности, ведь оно должно произойти за минимальное время.

Стоит сказать, несмотря на то, что при использовании высокочастотной закалки вызывается нагрев больше обычного, перегрева металла не случается. Такое явление объясняется тем, что зерно в стальной детали не успевает увеличиться, благодаря минимальному времени высокочастотного нагрева. К тому же, из-за того, что уровень нагрева выше и охлаждение интенсивнее, твердость заготовки после ее закалки ТВЧ вырастает приблизительно на 2-3 HRC. А это гарантирует высочайшую прочность и надежность поверхности детали.

Вместе с тем, есть дополнительный немаловажный фактор, который обеспечивает повышение износостойкости деталей при эксплуатации. Благодаря созданию мартенситной структуры, на верхней части детали образовываются сжимающие напряжения. Действие таких напряжений проявляется в высшей мере при небольшой глубине закаленного слоя.

Применяемые для закалки ТВЧ установки, материалы и вспомогательные средства

Полностью автоматический комплекс высокочастотной закалки включает в себя закалочный станок и ТВЧ установки (крепежные системы механического типа, узлы поворота детали вокруг своей оси, движения индуктора по направлению заготовки, насосов, подающих и откачивающих жидкость или газ для охлаждения, электромагнитных клапанов переключения рабочих жидкостей или газов (вода/эмульсия/газ)).

ТВЧ станок позволяет перемещать индуктор по всей высоте заготовки, а также вращать заготовку на разных уровнях скорости, регулировать выходной ток на индукторе, а это дает возможность выбрать правильный режим процесса закалки и получить равномерно твердую поверхность заготовки.

Принципиальная схема индукционной установки ТВЧ для самостоятельной сборки была приведена .

Индукционную высокочастотную закалку можно охарактеризовать двумя основными параметрами: степенью твердости и глубиной закалки поверхности. Технические параметры выпускаемых на производстве индукционных установок определяются мощностью и частотой работы. Для создания закаленного слоя применяют индукционные нагревающие устройства мощностью 40-300 кВА при показателях частоты в 20-40 килогерц либо 40-70 килогерц. Если необходимо провести закалку слоев, которые находятся глубже, стоит применять показатели частот от 6 до 20 килогерц.

Диапазон частот выбирается, исходя из номенклатуры марок стали, а также уровня глубины закаленной поверхности изделия. Существует огромный ассортимент комплектаций индукционных установок, что помогает выбрать рациональный вариант для конкретного технологического процесса.

Технические параметры автоматических станков для закалки определяются габаритными размерами используемых деталей для закалки по высоте (от 50 до 250 сантиметров), по диаметру (от 1 до 50 сантиметров) и массе (до 0,5 т, до 1т, до 2т). Комплексы для закалки, высота которых составляет 1500 мм и больше, оснащены электронно-механической системой зажима детали с определенным усилием.

Высокочастотная закалка деталей осуществляется в двух режимах. В первом каждое устройство индивидуально подключается оператором, а во втором – происходит без его вмешательств. В качестве среды закалки обычно выбирают воду, инертные газы или полимерные составы, обладающие свойствами по теплопроводности, близкими к маслу. Среда закалки выбирается в зависимости от требуемых параметров готового изделия.

Технология закалки ТВЧ

Для деталей или поверхностей плоской формы маленького диаметра используется высокочастотная закалка стационарного типа. Для успешной работы расположение нагревателя и детали не меняется.

При применении непрерывно-последовательной ТВЧ закалки, которая чаще всего используется при обработке плоских или цилиндрообразных деталей и поверхностей, одна из составляющих системы должна перемещаться. В таком случае либо нагревающее устройство перемещается по направлению к детали, либо деталь движется под нагревающим аппаратом.

Для нагрева исключительно цилиндрообразных деталей небольшого размера, прокручивающихся единожды, применяют непрерывно-последовательную высокочастотную закалку тангенциального типа.

Структура металла зубца шестерни, после закалки ТВЧ методом

После совершения высокочастотна нагрева изделия совершают его низкий отпуск при температуре 160-200°С. Это позволяет увеличить износостойкость поверхности изделия. Отпуски совершаются в электропечах. Еще один вариант – совершение самоотпуска. Для этого необходимо чуть раньше отключить устройство, подающее воду, что способствует неполному охлаждению. Деталь сохраняет высокую температуру, которая нагревает закаленный слой до температуры низкого отпуска.

После совершения закалки также применяется электроотпуск, при котором нагрев осуществляется при помощи ВЧ установки. Для достижения желаемого результата нагрев производится с более низкой скоростью и более глубоко, чем при поверхностной закалке. Необходимый режим нагрева можно определить методом подбора.

Для улучшения механических параметров сердцевины и общего показателя износостойкости заготовки нужно провести нормализацию и объемную закалку с высоким отпуском непосредственно перед поверхностной закалкой ТВЧ.

Сферы применения закалки ТВЧ

Закалка ТВЧ используется в ряде технологических процессов изготовления следующих деталей:

  • валов, осей и пальцев;
  • шестеренок, зубчатых колес и венцов;
  • зубьев или впадин;
  • щелей и внутренних частей деталей;
  • крановых колес и шкивов.

Наиболее часто высокочастотную закалку применяют для деталей, которые состоят из углеродистой стали, содержащей полпроцента углерода. Подобные изделия приобретают высокую твердость после закалки. Если наличие углерода меньше вышеуказанного, подобная твердость уже недостижима, а при большем проценте скорее всего возникнут трещины при охлаждении водяным душем.

В большинстве ситуаций закалка токами высокой частоты позволяет заменить стали, прошедшие легирование, более недорогими – углеродистыми. Это можно пояснить тем, что такие достоинства сталей с легирующими добавками, как глубокая прокаливаемость и меньшее искажение поверхностного слоя, для некоторых изделий теряют значение. При высокочастотной закалке металл становится более прочным, а его износостойкость возрастает. Точно так же, как углеродистые используются хромистые, хромоникелевые, хромокремнистые и многие другие виды сталей с низким процентом легирующих добавок.

Преимущества и недостатки метода

Преимущества закалки токами ВЧ:

  • полностью автоматический процесс;
  • работа с изделиями любых форм;
  • отсутствие нагара;
  • минимальная деформация;
  • вариативность уровня глубины закаленной поверхности;
  • индивидуально определяемые параметры закаленного слоя.

Среди недостатков можно выделить:

  • потребность в создании специального индуктора для разных форм деталей;
  • трудности в накладке уровней нагрева и охлаждения;
  • высокая стоимость оборудования.

Возможность использования закалки токами ВЧ в индивидуальном производстве маловероятна, но в массовом потоке, например, при изготовлении коленчатых валов, шестеренок, втулок, шпинделей, валов холодной прокатки и др., закалка поверхностей ТВЧ приобретает все более широкое применение.

Токи высокой частоты находят в настоящее время широкое применение в промышленности, связи, радиовещании, на транспорте, а также в медицине (высокочастотная терапия). Различают токи сверхвысокой частоты (СВЧ), ультравысокой частоты (УВЧ) и высокой частоты (ВЧ).

При работе с токами высокой частоты имеет место воздействие на организм радиочастотного излучения.

У генераторов высоких и ультравысоких частот человек подвергается воздействию электрических и магнитных полей, которые периодически сменяют друг друга. При работах у генераторов сверхвысоких частот человек подвергается облучению потока энергии волн.

Патологические изменения в организме, вызванные высокочастотными токами

При работе с токами высокой частоты в неблагоприятных условиях могут развиться патологические изменения в организме.

В этих случаях работающие жалуются на головную боль, головокружение, повышенную утомляемость, ослабление памяти, раздражительность, бессонницу ночью, сонливость днем, парестезии, боли в конечностях, снижение аппетита, жажду, боли в эпигастральной области, неприятные ощущения в области сердца в ряде случаев с иррадиацией в левую руку, понижение работоспособности. У женщин отмечается нарушение менструального цикла, мужчины иногда страдают импотенцией. Чаще всего, однако, отмечаются жалобы на слабость, головную боль, нарушение сна (сонливость днем и бессонница ночью), повышенную утомляемость, боли в области сердца.

Более выраженные субъективные расстройства имеют место у лиц со значительным стажем работы. Среди них относительно чаще отмечаются и жалобы сердечного характера.

Наиболее характерное клиническое проявление длительного воздействия радиочастотного излучения на организм в неблагоприятных производственных условиях представляет собой функциональное расстройство центральной нервной системы в форме вегетативной дистонии, нередко на астеническом фоне. Отмечается нарушение терморегуляции, потливость, стойкий красный дермографизм, повышенная возбудимость вестибулярного аппарата, легкий тремор вытянутых рук. У некоторых лиц наблюдается цианоз дистальных отделов конечностей с понижением кожной чувствительности по полиневритическому типу. Иногда имеют место нарушения трофики: выпадение волос, ломкость ногтей, похудание.

Физиологическими исследованиями, проведенными на производстве у лиц, имеющих дело с токами высокой частоты, установлено, что у них наблюдаются изменения высшей нервной деятельности, выражающиеся в нарушении равновесия между процессами возбуждения и торможения.

У работающих с токами высокой частоты также отмечаются изменения со стороны внутренних органов. Прежде всего обращает на себя внимание лабильность сердечно-сосудистой системы, наклонность к брадикардии, артериальной гипотензии, особенно в отношении систолического давления.

При длительном воздействии радиоволн, в особенности диапазонов сверхвысоких частот значительной интенсивности, отмечаются явные изменения со стороны сердца. На электрокардиограмме нередко выявляется синусовая аритмия, удлинение внутрипредсердной и внутрижелудочковой проводимости, снижение вольтажа зубцов R и T в стандартных и грудных отведениях). Таким образом, наряду с явными экстракардиальными влияниями ваготонического типа обычно отмечаются и определенные изменения со стороны сердечной мышцы типа миокардиодистрофии.

Могут наблюдаться и коронарные нарушения.

В ряде случаев у лиц, подвергавшихся воздействию радиоволн, выявляются эндокринные нарушения, в частности гиперфункция щитовидной железы у женщин.

Не совсем выясненным представляется характер изменений крови у работающих с токами высокой частоты. Во всяком случае можно считать, что изменения со стороны крови в разбираемых случаях носят неспецифический, маловыраженный и нестойкий характер. Отмечается тенденция к эритроцитозу и ретикулоцитозу.

При работах с токами сверхвысоких частот в условиях значительной интенсивности облучения наблюдаются сдвиги со стороны белой крови (лейкопения, или лейкоцитоз, лимфопения, эозинофилия, повышенное содержание нейтрофилов с патологической зернистостью протоплазмы).

Для работающих с токами высокой частоты характерна неустойчивость отдельных показателей белой крови. Чаще отмечается лейкопения, наблюдается и тромбопения.

Изменения со стороны крови, отмечаемые у лиц, работающих с токами высокой частоты, скорее являются выражением нейрорегуляторных нарушений, чем расстройств кроветворных органов. Есть указания на наличие у соответствующих лиц некоторых сдвигов биохимического характера: повышение РОЭ, содержания сахара и гистамина в крови, снижение альбумин-глобулинового коэффициента за счет повышения глобулиновых фракций.

По имеющимся клиническим наблюдениям, при работах с сантиметровыми волнами могут развиться изменения в хрусталике. В литературе имеются единичные указания, что женщины более чувствительны к воздействию радиоволн.

У работающих в условиях воздействия СВЧ отмечаются изменения в состоянии здоровья, которые характеризуются астеническим симптомокомплексом, рядом ваготонических реакций, нарушениями эндокринно-гуморальных процессов. Отмечаются изменения возбудимости обонятельного анализатора, незначительные и нестойкие отклонения в составе периферической крови, изменения в хрусталике.

При случайном контакте с проводниками тока высокой частоты (100 килоциклов и выше) могут иметь место ожоги кожи. Ожоги эти обычно бывают глубокими и болезненными, но вначале они менее болезненны, чем ожоги от огня. Иногда такие ожоги развиваются под кожей или под одеждой, которая остается неизмененной. В области эпифизов костей, например на концевых фалангах пальцев, ожоги носят более выраженный характер, чем на участках с развитыми мягкими тканями.

Механизм действия радиочастотного излучения на организм

Механизм действия радиочастотного излучения на организм еще не может считаться окончательно выясненным. Несомненно, они оказывают термическое действие вследствие поглощения тканями высокочастотной энергии и превращения ее в тепло.

Наряду с термическим действием радиоволны, очевидно, оказывают на организм и специфическое влияние, сущность которого еще не выяснена.

Характер изменений, которые отмечаются в организме при воздействии электромагнитных полей различных частотных диапазонов, одинаков, однако выраженность их действия возрастает с увеличением мощности электромагнитного поля, длительности воздействия и укорочения длины волны.

Наряду с общими признаками воздействия радиоволн отмечаются и некоторые особенности, характерные для различных диапазонов волн. Так, например, у работающих с миллиметровыми волнами изменения со стороны сердечно-сосудистой системы являются наиболее выраженными.

Как показывают экспериментальные данные, при воздействии СВЧ на организм животных развиваются умеренные дегенеративные и пролиферативные процессы в нервной системе и внутренних органах, нарастающие с увеличением интенсивности облучения.

Экспериментальные данные свидетельствуют также об изменениях обмена веществ под влиянием облучения СВЧ (углеводный обмен).

В современных производственных условиях встречаются технологические процессы, при которых работающие с генераторами токов высокой частоты подвергаются облучению не только электромагнитных полей радиочастот, но и рентгеновыми лучами. В этих случаях у работающих отмечаются более выраженные функциональные нарушения со стороны центральной нервной системы и более демонстративные изменения со стороны крови (лейкопения, тромбопения, анемия, качественные изменения белой и красной крови).

Сложный характер действия электромагнитных полей на организм дает возможность при определенных условиях успешно использовать их для терапевтических целей. Токи УВЧ оказывают противовоспалительное и болеутоляющее действие. Болеутоляющий эффект особенно выражен при воспалительных процессах. Установлено также сосудорасширяющее действие УВЧ терапии. Наибольший эффект отмечается при использовании УВЧ при острых гнойных процессах (фурункулы и т. д.), остеомиелитах, инфицированных ранах и отморожениях. УВЧ терапия показана при ангиоспастических явлениях, бронхиальной астме, облитерирующем эндартериите и болезни Рейно.

Противопоказаниями являются злокачественные опухоли, гипотония, активный туберкулез.

Лечебно-профилактические мероприятия

С учетом характера клинических явлений, развивающихся при длительном воздействии радиоволн, проводится курс вливаний раствора глюкозы с витамином В1 и аскорбиновой кислотой в сочетании с приемом небольших доз брома и кофеина, назначается глутаминова я кислота (1 г 3 раза в день), гидротерапия, в дальнейшем - общее санаторно-курортное лечение.

Важным лечебно-профилактическим мероприятием является перерыв в работе, продолжительность которого зависит от состояния больного.

Изменения, развивающиеся при воздействии радиоволн, обычно носят нестойкий функциональный характер и чаще всего ликвидируются после временного перевода на другую работу и соответствующего лечения. Однако обращает на себя внимание отмечаемая иногда стойкость изменений со стороны сердечно-сосудистой системы, в некоторых случаях склонных даже к прогрессированию после прекращения воздействия. В подобных случаях, а также при наличии других отягощающих обстоятельств, в особенности, если не проведены необходимые оздоровительные мероприятия на производстве, возвращение на прежнюю работу нужно считать противопоказанным. В случае если перевод на другую работу связан со значительным понижением квалификации, больной должен быть направлен на ВТЭК. для определения группы инвалидности (профессиональной). Лица с изменениями, вызванными воздействием радиоволн, нуждаются в длительном наблюдении. Все поступающие на работу с токами высокой частоты подлежат предварительному медицинскому осмотру, а работающие - периодическому осмотру один раз в год.

Из лабораторных исследований обязательными являются анализы крови на гемоглобин, лейкоциты и РОЭ. По показаниям проводится электрокардиография.

Противопоказаниями к приему на работу с токами высокой являются:

1) все болезни крови и выраженное вторичное малокровие (гемоглобин ниже 60%);

2) органические заболевания нервной системы;

3) выраженные эндокринно-вегетативные заболевания;

4) эпилепсия;

5) выраженные астенические состояния;

6) выраженные неврозы;

7) катаракта;

8) общие хронические заболевания.

Выраженные изменения со стороны сердечно-сосудистой системы также должны служить противопоказанием. Эти же изменения являются противопоказанием к продолжению работы с ТВЧ.

Эффективным методом защиты работающих является экранировка установок - генераторов токов высокой частоты, а также некоторые методы индивидуальной профилактики - защитные очки из мелкой латунной сетки или из металлической решетки. При высоких интенсивностях ТВЧ рекомендуется применение защитного шлема из латунной сетки.

К методам высокочастотной терапии относятся : дарсонвализация, индуктотермия, ультратонотерапия (ТНЧ-терапия). Частота 100 кГц – 30 мГц, длина волны 10 км – 10м.

Воздействие электрическими полями ультравысокой частоты – э.п. УВЧ от 30 мГц – 300 мГц, длина волны 10 м – 1 м.

Воздействие электромагнитными полями сверхвысокой частоты (СВЧ – терапия), включающее дециметроволновую и сантиметроволновую терапию (ДМВ- и СМВ-терапия). Частота 300 мГц – 300000 мГц, длина волны 1 м – 1 см.

Объединяет эти факторы первичный механизм действия: специфическое осцилляторное действие, т.е. изменение дипольных молекул, и неспецифический тепловой компонент.

В физиотерапевтических аппаратах высокочастотные колебания создаются высокочастотными генераторами, основной частью которых является колебательный контур, индуктивно связанный с терапевтическим контуром. Высокочастотная энергия, индуцированная в колебательном контуре, подводится к больному при помощи специальных электродов - конденсаторных пластин, индукторов, излучателей и других приспособлений.

Под воздействием высокочастотного электромагнитного поля в тканях организма происходят маятникообразные колебательные движения ионов.

Механическая энергия этого движения переходит в тепловую , что приводит к эндогенному выделению тепла в тканях. В этом заключается неспецифическое биологическое действие высокочастотных электромагнитных колебаний. Кроме того, в переменном электромагнитном поле происходит пространственная переориентация (поляризация) диполей диэлектриков, что приводит к расшатыванию боковых цепей молекул и к изменению их физико-химических свойств. Чем выше частота электромагнитных колебаний, тем выраженнее осцилляторный эффект. При терапевтическом применении высокочастотных электромагнитных колебаний преимущественное проявлений осцилляторного эффекта происходит при так называемых олиготермических дозировках, когда больной в области воздействия ощущает легкое тепло или не чувствует ничего.

Местная дарсонвализация метод электролечения, основанный на использовании переменного импульсного тока высокой частоты (100 – 300 кГц), высокого напряжения ((20 кВ) и малой силы (0,02мА). Действующим фактором является электрический разряд, возникающий между телом пациента и электродом. Наибольшая плотность токов смешения при дарсонвализации возникает в поверхностных тканях, где и реализуются основные эффекты лечебного воздействия. Кратковременный спазм сосудов кожи сменяется их продолжительным расширением вследствие снижения тонуса гладких мышц. Определенное значение в механизме действия дарсонвализации имеют озон и окислы азота, образующиеся в небольшом количестве во время процедуры. Применяемые токи, раздражая рецепторы кожи и слизистых оболочек, оказывают обезболивающее и противозудное действие.

Действие токов приводит к повышению эластичности кожи, стимуляции ее секреторной и выделительной функции. При удалении от тела возникает искровой разряд, действующий на больного. На поверхности кожи возникают микроударные волны, которые сопровождаются характерным треском. Под действием искрового разряда в коже образуются участки микронекрозов, которые стимулируют фагоцитоз и выделение биологически активных веществ (гепарин, цитокины) и медиаторов (гистамин) в подлежащих тканях. Искровой разряд уменьшает повышенный тонус артериол кожи и внутренних органов; повышает тонус вен и усиливает трофико-метаболические процессы в тканях. Токи оказывают бактериостатический и бактерицидный эффекты. Дарсонвализация оказывает антиспастическое действие, которое проявляется в прекращении спазма сосудов и сфинктеров и в уменьшении обусловленных ими болей, противозудное действие, приводит к улучшению периферического кровообращения.

Показаниями для назначения дарсонвализации являются заболевания сосудистого генеза (варикозное расширение вен нижних конечностей и геморроидальных вен) кожи (псориаз, нейродермит), стоматологические (парадонтоз, хронический гингивит, стоматит), ЛОР-органов (неврит слуховых нервов).

Противопоказания к назначению те же, что и других физиотерапевтических процедур, а также индивидуальная непереносимость тока.

Для местной дарсонвализации отечественная промышленность выпускает аппараты «Искра».

Ультратонотерапия – метод лечения, в котором используется переменный синусоидальный ток надтональной (надзвуковой) частоты (22 кГц), высокого напряжения (3 – 5 кВ), с выходной мощностью до 10 Вт.

Действующим фактором в этом методе, так же как при дарсонвализации, является электрический разряд , но вследствие большей мощности тока происходит также образование эндогенного тепла.

Ток надтональной частоты (ТНЧ-терапия) вызывает физиологические реакции, во многом сходные с таковыми при дарсонвализации. Однако он оказывает более выраженное противовоспалительное действие. Ток надтональной частоты находит преимущественное применение в детской, стоматологической и гинекологической практике.

При лечении надтональными токами используют аппарат «Ультратон ТНЧ-10-1», предназначенный для местных воздействий.

Ультравысокочастотная (УВЧ) терапия – лечебное воздействие, при котором используют электрическую составляющую переменного электромагнитного поля высокой и ультравысокой частоты, подведенного к пациенту с помощью конденсаторных пластин.

Выделяют два компонента в действии УВЧ: нетепловой (осцилляторный) и тепловой. Воздействующим фактором при УВЧ -терапии является электрическая составляющая электромагнитных колебаний или электрическое поле, которое возникает в результате преобразования энергии электромагнитных волн конденсаторными пластинами-электродами аппарата УВЧ. В распределении энергии электрического поля в организме человека важную роль играет величина воздушного зазора между телом и электродами. Общий суммарный зазор не должен превышать 6 см. Настройка терапевтического контура в резонанс с механическим проводится по свечению неоновой лампочки, помещаемой у одной из конденсаторных пластин.

При проведении УВЧ-терапии энергия поглощается тканями-проводниками, к которым относятся кровь, лимфа, межклеточная жидкость, мышцы, паренхиматозные органы, и тканями-диэлектриками – жировая, костная, нервная, хрящевая, плотная соединительная ткань.

Возникающие тепловой и нетепловой (осцилляторный) эффекты практически невозможно изолировать друг от друга, поэтому ответные реакции организма следует рассматривать как их суммарное действие. Вследствие различного поглощения энергии УВЧ-поля белковыми молекулами и ионами максимальное количество тепла образуется в тканях с выраженными диэлектрическими свойствами и бедными водой (нервная, костная и соединительная ткань, подкожная жировая клетчатка, сухожилия и связки). В тканях со значительной электропроводностью и богатых водой (кровь, лимфа, мышечная ткань) тепла образуется значительно меньше.

Э.п. УВЧ оказывает противовоспалительное действие за счет улучшения крово- и лимфообращения, дегидратации тканей и уменьшения экссудации, активирует функции соединительной ткани, стимулирует процессы клеточной пролиферации, что создает возможность ограничивать воспалительный очаг плотной соединительной капсулой.

На практике применяется и импульсное электрическое поле УВЧ. Импульсное электрическое поле УВЧ вызывает только осцилляторный эффект. Оно обладает более выраженным противовоспалительным, болеутоляющим и спазмолитическим действием.

Показания: воспалительные, острые гнойные процессы различной локализации (фурункулы, карбункулы, абсцессы, флегмоны, панариции), острые и подострые воспалительные заболевания различных внутренних органов (легких, желудка, печени, мочеполовых органов), травмы и заболевания опорно-двигательного аппарата.

Импульсное электрическое поле УВЧ применяют для лечения гипертонической и язвенной болезни, при хронических гепатитах, воспалительных заболеваниях женской половой сферы, патологии суставов, при аллергических дерматозах.

Противопоказания: аневризма аорты; гипотензия; частые приступы стенокардии; наличие имплантированных кардиостимуляторов в области воздействия; оформленный гнойный очаг воспаления; гнойные синуситы; инсульт; беременность; лихорадка; активные формы туберкулеза; злокачественные новообразования; кровотечения.

Для проведения УВЧ-терапии применяют аппараты малой, средней и большой мощности. К ним относятся такие аппараты, как «Минитерм», УВЧ-30, УВЧ-70, УВЧ-66, Экран-1, Экран-2. К ним прилагаются конденсаторные пластинки, диаметры которых 4,8, 11 см соответственно, которые подбирают соответственно величине очага воспаления. Различают три мощности воздействия: атермическую (нетепловую), олиготермическую (слаботепловую) и термическую (тепловую).

Продолжительность процедуры не более 15 минут. На курс лечения назначаются 3-5-7 процедур.

Сверхвысокочастотная электротерапия (СВЧ-терапия) метод лечения, основанный на использовании энергии микроволн – электромагнитного поля сверхвысокой частоты. Микроволны (микрорадиоволны, СВЧ-колебания) имеют длину волны от 1м до 1 мм, частоту колебаний соответственно от 300 до 300 000 Мгц. В спектре электромагнитных радиоволн они занимают промежуточное место между волнами ультравысокой частоты и инфракрасными лучами. Этим обусловлены физические свойства микроволн, характерные как для радиоволн ультравысокой частоты (способность проникать в биологические ткани), так и для инфракрасных лучей (отражение, преломление, поглощение биологическими тканями).

В лечебной практике используют микроволны дециметрового (0,1 – 1 м) и сантиметрового (1 – 10 см) диапазонов и в соответствии с этим различают 2 вида СВЧ-терапии: дециметровую (ДМВ-терапия) и сантиметровую (СМВ-терапия).

Механизм действия микроволн на организм складывается из двух процессов: первичного (непосредственного влияния микроволны на ткани организма) и вторичного – возникающих в ответ на него нейрорефлекторных и нейрогуморальных реакций целостного организма. Первичное влияние проявляется в зоне локального воздействия, состоит из теплового и нетеплового компонентов. Тепловой компонент проявляется нагревом тканей за счет эндогенного тепла, которое образуется в результате трения, возникающего при движениях свободных ионов электролитов тканей и колебаний дипольных молекул вокруг своей оси в процессе ориентировки их по направлению силовых электромагнитного поля, а также за счет выделения тепла молекулами воды при поглощении ими энергии микроволн. Нетепловой (экстратермический, осцилляторный) компонент механизма действия микроволн заключается в различных внутримолекулярных физико-химических и электрохимических изменениях и в структурных перестройках, возникающих под влиянием энергии микроволн в сложных биоколлоидных системах. Соотношение теплового и нетеплового компонентов в действии микроволн определяется дозировкой воздействия – при малой мощности преобладает нетепловой, а при большой мощности – тепловой компонент.

Вторичное звено механизма лечебного действия микроволны состоит из непосредственного влияния поглощенной энергии на рецепторы тканей, возникновение начального рефлекса с хемо-, баро-, терморецепторов в зоне облучения. Эти импульсы через нервные стволы поступают в ЦНС, что обеспечивает ответную реакцию «исполнительных» органов. образующиеся при воздействии микроволны биологически активные вещества вызывают раздражение рецепторов вне зоны воздействия (гуморальный компонент) и обусловливают общее физиологическое действие через центральные регулирующие механизмы. В лечебных дозах микроволны обладают противовоспалительным, бактериостатическим, болеутоляющим, антиспастическим действием.

Микроволновая терапия находит широкое применение. Она показана при дегенеративно-дистрофических и воспалительных заболеваниях опорно-двигательного аппарата (артрозы, артриты, остеохондроз и др.); заболеваниях сердечно-сосудистой системы (гипертоническая болезнь I - II стадии); заболеваниях легких (бронхиальная астма, пневмонии); воспалительных заболеваниях органов малого таза (аднексит, простатит); заболеваниях желудочно-кишечного тракта (язвенная болезнь желудка и двенадцатиперстной кишки, холецистит и др.); заболеваниях ЛОР-органов (тонзиллиты, отиты, риниты); кожных заболеваниях (фурункулы, карбункулы, гидроаденит, трофические язвы, послеоперационные инфильтраты).

Противопоказания: беременность, острые воспалительные гнойные процессы, отечность тканей и наличие инородных тел в зоне воздействия, стенокардия покоя, пароксизмальные нарушения сердечного ритма, язвенная болезнь желудка со стенозом привратника и опасностью кровотечения, эпилепсия, тиреотоксикоз, катаракта, глаукома.

Дециметровая терапия метод лечебного воздействия на организм электромагнитными волнами дециметрового диапазона.

Под действием дециметровых электромагнитных волн низкой интенсивности происходят сложные физико-химические процессы, протекающие в облучаемых тканях. Дециметровые электромагнитные волны вызывают как осцилляторный, так и тепловой эффект. Максимальное выделение тепла отмечается в органах и тканях, богатых водой, - крови, лимфе, мышечной ткани, паренхиматозных органах. Регионарная температура глубоко расположенных тканей повышается на 1,5ºС (тепловой эффект). Распределение тепла в облучаемых тканях происходит равномерно на большую глубину. Проникающая способность дециметровых волн в глубину тканей составляет примерно 8 – 11 см.

Дециметровые электромагнитные волны оказывают стимулирующее действие на железы внутренней секреции; выраженное влияние на иммунобиологические процессы, особенно при воздействии на область надпочечников; не вызывают резких гемодинамических сдвигов в сердечно-сосудистой системе, они улучшают обменные процессы в миокарде и его сократительную функцию, снижают периферическое сопротивление сосудов, нормализуют микроциркуляцию. Вследствие активации нервных парасимпатических волокон происходит снижение артериального давления и частоты сердечных сокращений.

Аппаратура. Для проведения ДМВ-терапии отечественная промышленность выпускает аппараты: «Волна-2», «Ромашка» и т.д. В ФРГ выпускаются аппараты: «Sirotherm» (фирма «Siemens»), «Erbotherm» (фирма «Еrbe»), в Нидерландах – «DW961» (фирма «Philips») и др.

Дозиметрия. Воздействия ДМВ дозируются по выходной мощности и по ощущуению тепла больным. Продолжительность процедуры от 5 до 10 – 15 мин, общая длительность процедуры не более 30 – 35 мин. Курс составляет 10 – 12 процедур, проводимых ежедневно или через день. Повтоный курс возможен через 3 – 4 месяца.

Сантиметроволновая терапия - лечебное применение электромагнитных волн сантиметрового диапазна.

Сантиметровые волны способны отражаться от границ раздела глубоколежащих тканей. В связи с этим внутри организма падающая и отраженная энергии могут суммироваться и образовывать «стоячие» волны, в результате чего возникает опасность местного перегрева тканей и возникновения внутренних ожогов. Малая длина волны обусловливает меньшую глубину проникновения этих электромагнитных волн, которая составляет примерно 3 – 5 см вглубь тканей . Сантиметровым волнам, так же как и дециметровым, присущи осцилляторный и тепловой компоненты механизма лечебного действия.

При воздействии на ткани высокоинтенсивными СВЧ-излучениями в них отмечается выделение тепла – температура кожи и подлежащих тканей увеличивается на 1 - 3ºС, а глубоколежащих тканей на 0,5ºС. Под влиянием сантиметровых волн происходит усиление скорости кровотока, количества функционирующих капилляров и расширение мелких сосудов. Указанные процессы способствуют ускорению рассасывания воспалительного очага, активируют метаболизм и трофику облучаемых тканей. Сантиметровые волны обладают заметным противовоспалительным и болеутоляющим эффектами, уменьшают артериальное давление и урежают сердцебиение (брадикардия). Усиливают интенсивность метаболических процессов в облучаемых тканях, повышают сократимость сердечной мышцы.

Аппаратура . Для проведения СМВ-терапии используют аппараты «Луч-58-1» и «Луч-2». В ФРГ для этого вида физиотерапии выпускают аппараты «Erbotherm 12-240» (фирма «Еrbe»), Jirotherm – 2450» (фирма Huttinger). Отечественные аппараты настроены на частоты 2375 Гц, зарубежные на – 2450 МГц.

Дозировка. СМВ по выходной мощности бывает слаботепловая, тепловая и сильнотепловая. Обычно применяют слаботепловые и тепловые дозы. Общая длительность одной процедуры не более 30 мин. Курс 8 – 12 – 14 процедур, ежедневно или через день. Повторный курс – через 4 – 6 мес.

Крайне высокочастотная терапия – воздействие на организм с лечебными целями электромагнитными волнами миллиметрового диапазона.

Миллиметровые волны обладают низкой проникающей способностью в биологические ткани (0,2 – 0,6 мм). Однако удельное поглощение энергии КВЧ значительно выше, чем у микроволн. Миллиметровые волны способны вызывать конформационные перестройки в различных структурных элементах кожи (в рецепторах и нервных проводниках, тучных клетках). Поэтому при КВЧ-терапии отдается предпочтение воздействиям на рефлексогенные зоны и точки акупунктуры. Под их действием изменяется деятельность вегетативной и нейроэндокринной систем, улучшается трофика тканей, ускоряются репаративные процессы и повышается неспецифическая резистентность организма, восстанавливается гомеостаз.

Показания: подострые и хронические воспалительные заболевания периферической нервной системы (невралгии, неврит), хронические заболевания внутренних органов (язвенная болезнь желудка и двенадцатиперстной кишки в стадии обострения, дискинезия желчевыводящих путей), заболевания кожи (гнездная алопеция, псориаз, ограниченная склеродермия), эрозия шейки матки, консолидированные переломы костей.

Противопоказания: острые гнойные воспалительные заболевания, гипертиреоз, нейродермит, бронхиальная астма, некоторые онкологические заболевания, индивидуальная непереносимость микроволн миллиметрового диапазона.

Аппаратура. Дозировка. Для проведения процедур КВЧ-терапии используют электромагнитные колебания частотой 57 – 65 Гц (длины волн 4 – 8 мм). Генераторы монохроматических волн «Явь – 1 5,6» и «Явь – 1 7,1», «Электроника», КВЧ-101.

Дозируют процедуры по выходной мощности аппарата и ощущениям (сонливость, чувство тепла, понижение кожной чувствительности) больного. Продолжительность воздействия составляет от 5 – 6 до 20 – 25 мин. Процедуры проводят ежедневно или через день. Курс лечения – от 3 – 5 до 15 – 20 процедур. Повторные курсы КВЧ-терапии можно проводить через 2 – 3 месяца.

Понравилось? Лайкни нас на Facebook