Схема лвс структурная физическая. Локальная сеть: Общие правила построения сети и ее основные компоненты. Информационные потоки в ЛВС предприятия

Мы начинаем публикацию цикла статей на тему развертывания небольшой (в пределах дома или небольшого офиса) локальной сети и подключения ее к Интернет.

Полагаю, актуальность этого материала на сегодня довольно высока, так как только за последние пару месяцев несколько моих знакомых, неплохо знающие компьютеры в целом, задавали мне вопросы на сетевые темы, которые я считал очевидными. Видимо таковыми они являются далеко не для всех;-)

По ходу статьи будут использованы термины из сетевой области, большинство их них объясняется в мини-ЧаВо о сетях , составленного Дмитрием Редько.
К сожалению, этот материал давно не обновляется. Хотя он и не потерял актуальности, но в нем довольно много пробелов, поэтому, если найдутся добровольцы эти пробелы заполнить, пишите на емейл, указанный в конце этой статьи.
При первом использовании сетевого термина, с него будет идти гиперссылка на объяснение оного в ЧаВо. Если некоторые термины не будут объяснены по ходу статьи или в ЧаВо, не стесняйтесь упомянуть этот факт в , где эта статья будет обсуждаться.

Итак. В первой части будет рассмотрен самый простой случай. Имеем 2 или более компьютеров со встроенной в материнскую плату или установленной отдельно сетевой картой , коммутатор (switch) или даже без него, а так же канал в Интернет, предоставленный ближайшим провайдером.

Зафиксируем, что на всех компьютерах установлена операционная система Microsoft Windows XP Professional с Service Pack версии 1. Не буду утверждать, что это наиболее массовая ОС, установленная сейчас на компьютерах, но рассматривать все существующие семейства той же Microsoft довольно долго (но, если найдется много страждущих, проанализируем и другие). Версия языка ОС – English. На русской версии все будет работать аналогичным образом, читателям надо будет лишь найти соответствия русских аналогов названий в представленных ниже скришнотах.

Если у нас всего лишь два компьютера и в наличии нет коммутатора, то для создания сети между двумя компьютерами требуется наличие сетевой карты в каждом из них и кросс-овер кабель для объединения компьютеров друг с другом.

Почему кросс-овер и чем плох обычный кабель? В стандартах Ethernet на 10 и 100Мбит (10Base-T и 100Base-TX) для витой пары используется 4 провода (две свитых меж собой пары проводов). Обычно в кабеле, типа витая пара, 8 проводов, но из них используются только 4 (все восемь применяются в Gigabit Ethernet).

После получения кабеля, соединяем с помощью него сетевые карты компьютеров и вуаля - все должно заработать (на физическом уровне). Для проверки работоспособности сети на физическом уровне (уровне сигналов) имеет смысл посмотреть на индикаторы (чаще всего зеленого цвета), которые расположены на сетевой карте вблизи RJ-45 разъема. Как минимум один из них должен отвечать за индикацию наличия линка (физического соединения). Если загорелись индикаторы на обеих сетевых картах, то физический линк есть, кабель обжат верно. Горящий индикатор лишь на одной из двух карт не говорит о том, что на физическом уровне все в порядке. Мерцание этих (или соседних) индикаторов сигнализирует о передаче данных между компьютерами. Если индикаторы на обеих картах не горят, то с большой вероятностью неверно обжат или он поврежден кабель. Так же возможно, что одна из сетевых карт вышла из строя.

Конечно, описанное в предыдущем абзаце не означает, что операционная система видит сетевую карту. Горение индикаторов говорит лишь о наличии физического линка между компьютерами, не более того. Чтобы Windows увидела сетевую карту, нужен драйвер этой карты (обычно, операционка сама находит нужный и ставит его автоматически). Цитата из форума: «Как раз вчера диагностировал случай с подключенной сетевухой, не до конца вставленной в PCI-разъем. В результате “физически” сеть работала, но ОС ее не видела. ».

Рассмотрим вторую ситуацию. Имеется коммутатор и два или более компьютера. Если два компьютера еще можно соединить без коммутатора, то если их три (или больше), то их объединение без свича является проблемой. Хотя проблема и разрешима - для объединения трех компьютеров нужно в один из них вставить две сетевые карты, перевести этот компьютер в режим маршрутизатора (роутера) и соединить его с двумя оставшимися машинами. Но описание этого процесса уже выходит за рамки этой статьи. Остановимся на том, что для объединения в одну локальную сеть трех и более компьютеров нужен коммутатор (тем не менее, есть и другие варианты: можно объединять компьютеры с посощью FireWire интерфейса или USB DataLink кабеля; а так же с помощью беспроводных (WiFi) карт, переведенных в Ad Hoc режим функционирования… но об этом в следующих сериях).

К коммутатору компьютеры подсоединяются прямым кабелем . Какой вариант заделки (568A или 568B) будет выбран - абсолютно не важно. Главное помнить, что с обеих сторон кабеля она (заделка) совпадала.

После обжима кабеля (или покупки оного в магазине), и подсоединения всех имеющихся компьютеров к коммутатору, следует проверить наличие физического линка. Проверка протекает аналогично вышеописанному способу для двух компьютеров. На коммутаторе рядом с портами так же должны присутствовать индикаторы, сигнализирующие о наличии физического соединения. Вполне может оказаться, что индикаторы находятся не рядом (сверху, сбоку, снизу) с портом, а вынесены на отдельную панель. В таком случае они будут пронумерованы в соответствии с номерами портов.

Добравшись до этого абзаца, мы уже имеем физически объединенные в локальную сеть 2 или более компьютеров. Переходим к настройке операционной системы.

Для начала, проверим правильность установок IP-адресации у сетевой карты. По-умолчанию, ОС Windows (2K/XP) сама назначает нужные IP адреса картам, но лучше в этом убедится самим.

Идем в настройки сетевой карты. Это можно сделать двумя путями, через панель управления (Start -> Control Panel -> Network Connection)


Или, если сетевое окружение (Network Places) вынесено на рабочий стол, то достаточно кликнуть по нему правой кнопкой и выбрать Properties (Свойства).


В появившемся окне выбираем нужный сетевой адаптер (обычно он там один). Новое окно сообщает нам довольно много информации. Во-первых, статус соединения (в данном случае - Connected, т.е. физическое подключение есть) и его скорость (100 Мбит). А так же количество посланных и принятых пакетов. Если кол-во принимаемых пакетов равно нулю, а в сети находится более одного компьютера (включенными), то это, возможно, указывает на неисправность нашей сетевой карты или порта коммутатора (если компьютер подключен к нему). Так же возможна неисправность самого кабеля.


Выбрав закладку Support, можно узнать текущий IP адрес и маску подсети, назначенные сетевой карте. По умолчанию, ОС Windows дают адаптерам IP адреса их диапазона 169.254.0.0 -- 169.254.255.254 с маской подсети 255.255.0.0. Обсуждение масок, классов подсетей и так далее выходит за рамки этой статьи. Главное запомнить, что маска подсети у всех компьютеров из одной сети должна совпадать, а IP адреса - различаться. Но опять таки, цифры IP адреса, которые совпадают по позициям с ненулевыми цифрами маски подсети, у всех компьютерах должны быть одинаковыми, т.е. в данном примере у всех хостов из локальной сети в IP адресе будут совпадать две первые позиции цифр - 169.254.


IP-настройки сетевой карты могут задаваться и вручную (Свойства сетевого адаптера -> Properties -> Internet Protocol (TCP/IP) -> Properties). Но в большинстве случаев имеет смысл выставить настройки в значение по умолчанию (автоматическое определение IP адреса и DNS) и операционная система настроит сетевые адаптеры сама.


Кроме сетевых адресов, всем компьютерам нужно задать одинаковое имя рабочей группы. Это настраивается в настройках системы (System Properties). Туда можно попасть через панель управления (System -> Computer Name). Разумеется, можно задавать и разные имена рабочим группам. Это удобно, если у вас много компьютеров в сети и нужно как то логически разделить работающие машины между собой. Следствием этого станет появление нескольких рабочих групп в сетевом окружении (вместо одной).


или, если значок My Computer был выведен на рабочий стол, то правым кликом мыши на этом значке и выборе (Properties -> Computer Name).


В появившемся окне (появляющимся после нажатия кнопки Change) можно изменить имя компьютера (каждой машине - свое уникальное имя). И тут же надо ввести название рабочей группы. У всех компьютеров в локальной сети название рабочей группы должно совпадать.

После этого ОС попросит перезагрузиться, что и нужно будет сделать.

На любом из компьютеров можно «расшаривать» (т.е. выкладывать в общий доступ) директории. Это делается следующим образом:


В проводнике жмем правой кнопкой на директорию, выбираем Свойства (Properties).


Выкладывание директорий в общий доступ осуществляется в закладке Sharing. В первый раз нам предложат согласиться, что мы понимаем то, что делаем.


Во все последующие - достаточно лишь поставить галку в поле Share this foldier (к директории будет открыт доступ по сети только в режиме чтения). Если нужно разрешить изменение данных по сети, то придется поставить галку в поле Allow Network User to Change my Files.


После подтверждения (нажатия OK), значок директории сменится на тот, что показан на скриншоте.


С других компьютеров получить доступ к расшаренным директориям можно, зайдя в сетевое окружение (My Network Places), находящееся в меню Пуск или на рабочем столе, выбрав View Workgroup Computers,


а затем щелкнуть на нужном имени компьютера.


Выложенные в общий доступ директории будут представлены в появившемся окне.


После выбора любой из них можно работать с ними так же, как будто они расположены на локальном компьютере (но, если разрешение на изменение файлов при шаринге директории не было активировано, то изменять файлы не получится, только смотреть и копировать).

Обращаю внимание, что вышеописанный метод без проблем будет работать, если на обоих компьютерах (на котором директория была расшарена и который пытается получить к ней доступ по сети) были заведены одинаковые имена пользователей с одинаковыми паролями. Другими словами, если вы, работая под пользователем USER1, выложили в общий доступ директорию, то что бы получить к ней доступ с другого компьютера, на нем так же должен быть создан пользователь USER1 с тем же самым паролем (что и на первом компьютере). Права пользователя USER1 на другом компьютере (том, с которого пытаются получить доступ к расшаренному ресурсу) могут быть минимальными (достаточно дать ему гостевые права).

Если вышеописанное условие не выполняется, могут возникнуть проблемы с доступом к расшаренным директориям (выпадающие окошки с надписями вида отказано в доступе и тд). Этих проблем можно избежать, активировав гостевой аккаунт. Правда в этом случае ЛЮБОЙ пользователь внутри локальной сети сможет увидеть ваши расшаренные директории (а в случае сетевого принтера - печатать на нем) и, если там было разрешено изменение файлов сетевыми пользователями, то любой сможет их изменять, в том числе и удалять.

Активация гостевого аккаунта производится следующим образом:
Пуск -> панель управления ->
такой вид, как на скриншоте, панель управления приобретает после щелканья на кнопке Switch to Classic View (переключиться к классическому виду)
-> администрирование -> computer management ->

В появившемся окне управления компьютером выбираем закладку управления локальными пользоватлями и группами, находим гостевой (Guest) аккаунт и активируем его. По умолчанию в Windows гостевой аккаунт уже заведен в системе, но заблокирован.

Пару слов о добавлении пользователей в систему (подробнее об этом в следующих статьях). В том же менеджере управления локальными пользователями и группами, щелкаем правой кнопкой мыши на свободном месте списка пользователей, выбираем New user (добавить нового пользователя).

В появившемся окне вводим логин (в данном случае введен user2), полное имя и описание, последние два значения не обязательны ко вводу. Далее назначаем пароль (password), в следующем поле - повторяем тот же самый пароль. Снятие галки User must change password at next logon (пользователь должен сменить пароль при следующем входе в систему), дает пользователю входить в систему под заданным паролем и не будет требовать его смены при первом логоне. А галка напротив Password never expiries (пароль никогда не устареет), дает возможность пользоваться заданным паролем бесконечное время.

По умолчанию, вновь созданный пользользователь входит в группу Users (пользователи). Т.е. у пользователя будут довольно ограниченные права. Тем не менее, их будет довольно много и на локальном компьютере можно будет зайти под этим логином и вполне конфортно работать. Можно еще более ограничить права (до минимума) этого пользователя, выведя его из группы Users и введя в группу Guests (гости). Для этого жмем правой кнопкой мыши на пользователя, выбираем Properties (свойства),

Member of -> Add , в появившемся окне жмем на Advanced (дополнительно)

Жмем Find Now (найти). И в появившемся списке выбираем нужную группу (Guest, гости).

Пользователь введен в группу Guest. Осталось вывести его из группы Users: выделяем ее и щелкаем на кнопке Remove (удалить).

Более гибкое управление доступом к расшареным ресурсам можно получить, отключив режим Simple File Sharing (простой доступ к файлам) в настройках Explorer-а. Но это опять выходит за рамки текущей статьи.

Предоставление в общий доступ (расшаривание) принтеров производится аналогичным способом. На компьютере, к которому подключен принтер, выбираем его значок (через пуск -> принтеры), жмем на нем правой кнопкой мыши, выбираем свойства (properties).

Управление общим доступом к принтеру осуществляется в закладке Sharing. Нужно выбрать пункт Shared As и ввести имя принтера, под которым он будет виден в сетевом окружении.

На других компьютерах, подключенных к той же локальной сети, сетевой принтер, скорее всего, сам появится в меню принтеров. Если этого не произошло, запускаем значок Add Printer (добавить принтер),

который вызовет визард по подключению принтеров.

Указываем ему, что мы хотим подключить сетевой принтер.

В следующем меню указываем, что хотим найти принтер в сетевом окружении. Так же можно ввести прямой UNC до принтера, например, \компьютер1принтер1, воспользовавшись пунктом Connect to this Printer.
UNC (Universal Naming Convention) - Универсальный сетевой путь, используется в операционных системах от Microsoft. Представляется в виде \имя_компьютераимя_расшаренного_ресурса, где имя_компьютера = NetBIOS имя машины, а имя_расшаренного_ресурса = имя расшаренной директории, принтера или другого устройства.

Если мы выбрали пункт поиска принтера в сетевом окружении, то после нажатия кнопки Next появится окно просмотра сетевого окружения, где и нужно выбрать расшареный принтер. После этой операции, с локальной машины можно посылать документы на печать на удаленный принтер.

Итак. Мы получили работоспособную локальную сеть. Пора бы дать ей доступ в Интернет. Далее в этой статье будет рассказано, как организовать такой доступ, используя один из компьютеров в качестве маршрутизатора (роутера). Для этого в нем должно стоять две сетевых карты. Например, одна - встроенная в материнскую плату, а вторая - внешняя, вставленная в PCI слот. Или две внешние, это неважно.

Ко второй сетевой карте роутера (первая смотрит в локальную сеть) подключаем провод, идущий от провайдера. Это может быть витая пара (кроссовер или прямой кабель) от ADSL модема, так же витая пара, протянутая монтажниками локальной сети вашего района или еще что-нибудь.

Вполне возможна ситуация, что ADSL модем (или другое подобное устройство) подключается к компьютеру через USB интерфейс, тогда вторая сетевая карта не нужна вовсе. Возможно так же, что компьютер-роутер является ноутбуком, у которого есть одна сетевая карта, подключенная проводом в локальную сеть и WI-FI (беспроводная) сетевая карта, подключенная к беспроводной сети провайдера.

Главное, что в окне Network Connections видны два сетевых интерфейса. В данном случае (см.скришнот) левый интерфейс (Local Area Connection 5) отвечает за доступ в локальную сеть, а правый (Internet) - за доступ в глобальную сеть Интернет. Разумеется, названия интерфейсов будут отличаться в каждом конкретном случае.

До реализации следующих шагов внешний интерфейс (смотрящий в Интернет) должен быть настроен. Т.е. с компьютера-будущего-роутера доступ в Интернет уже должен работать. Эту настройку я опускаю, так как физически невозможно предусмотреть все возможные варианты. В общем случае интерфейс должен автоматически получить нужные настройки от провайдера (посредством DHCP сервера). Можно проверить, получила ли сетевая карта какие-то адреса, аналогично способу, описанному выше в этой статье. Встречаются варианты, когда представитель провайдера выдает Вам список параметров для ручного конфигурирования адаптера (как правило, это IP адрес, список DNS-серверов и адрес шлюза).

Для активации доступа к Интернет для всей локальной сети кликаем правой кнопкой на внешнем (смотрящим в сторону Интернет) интерфейсе.

Выбираем закладку Advanced. И тут ставим галку напротив пункта Allow other Network Users to Connect through this Computer"s Internet Connection. Если нужно, что бы этим Интернет доступом можно было управлять с других компьютеров локальной сети, включаем Allow other Network Users to Control…

Если на машине не используется какой либо дополнительный файрвол (брандмауэр), помимо встроенного в Windows (т.е. программа, которая была дополнительно установлена на машину), то обязательно включаем файрвол (защита нашего роутера от внешнего мира) - Protect my Computer and Network. Если дополнительный файрвол установлен, то встроенную защиту можно не активировать, а лишь настроить внешний брандмауэр. Главное - что бы файрвол на интерфейсе, смотрящим в сторону Интернет обязательно был включен, встроенный или внешний.

После подтверждения (нажатия кнопки OK) в компьютере активируется режим роутера, реализуемого посредством механизма NAT. А над сетевым интерфейсом, где этот механизм активирован, появляется символ ладони (замочек сверху означает включение защиты файрволом этого интерфейса).

Прямым следствием этого режима является изменение адреса на локальном (смотрящем в локальную сеть) интерфейсе маршрутизатора на 192.168.0.1 с маской подсети 255.255.255.0. Кроме этого на компьютере, выступающем в роли маршрутизатора, активируется сервис DHCP (маршрутизатор начинает раздавать нужные параметры IP-адресации на все компьютеры локальной сети), и DNS (преобразования IP адресов в доменные имена и обратно). Маршрутизатор становится шлюзом по умолчанию для всех остальных компьютеров сети.

А вот как это выглядит с точки зрения остальных компьютеров локальной сети. Все они получают нужные настройки IP-адресации от маршрутизатора по DHCP. Для этого, разумеется, в настройках их сетевых карт должны стоять автоматическое получение IP адреса и DNS. Если это не было сделано, то ничего работать не будет. Настройка автоматического получения IP адреса и DNS была описана выше. Возможно, что компьютер получит нужные адреса от маршрутизатора не сразу, чтобы не ждать, можно нажать кнопку Repair, которая принудительно запросит DHCP сервис выдать нужную информацию.

При правильной настройке сетевой карты, компьютеры получат адреса из диапазона 192.168.0.2---254 с маской 255.255.255.0. В качестве шлюза по умолчанию (default gw) и DNS сервера будет установлен адрес 192.168.0.1 (адрес маршрутизатора).

Начиная с этого момента, компьютеры локальной сети должны получить доступ в Интернет. Проверить это можно, открыв какой-либо сайт в Internet Explorer или пропинговав какой-либо хост в интернете, например, www.ru. Для этого надо нажать Пуск –> Выполнить и в появившемся окошке набрать
ping www.ru -t
Разумеется, вместо www.ru можно выбрать любой другой работающий и отвечающий на пинги хост в Интернет. Ключ «-t» дает возможность бесконечного пинга (без него будет послано всего четыре пакета, после чего команда завершит работу, и окно с ней закроется).

В случае нормальной работы канала в Интернет, вывод на экран от команды ping должен быть примерно такой, как на скриншоте, т.е. ответы (reply) должны идти. Если хост не отвечает (т.е. канал в Интернет не работает или что-то неверно настроено на маршрутизаторе) то вместо ответов (reply-ев) будут появляться timeout-ы. Кстати говоря, не у всех провайдеров разрешен ICMP протокол, по которому работает команда ping. Другими словами, вполне возможна ситуация, что «пинг не проходит», но доступ в Интернет есть (сайты открываются нормально).

Напоследок немного подробнее остановлюсь на механизме NAT. NAT - Network Address Translation, т.е. технология трансляции (преобразования) сетевых адресов. При помощи этого механизма несколько машин из одной сети могут выходить в другую сеть (в нашем случае - несколько машин из локальной сети могут выходить в глобальную сеть Интернет) используя только один IP адрес (вся сеть маскируется под одним IP адресом). В нашем случае это будет IP адрес внешнего интерфейса (второй сетевой карты) маршрутизатора. IP адреса пакетов из локальной сети, проходя через NAT (в сторону Интернет), перезаписываются адресом внешнего сетевого интерфейса, а возвращаясь обратно, на пакетах восстанавливается правильный (локальный) IP адрес машины, которая и посылала исходный пакет данных. Другими словами, машины из локальной сети работают под своими адресами, ничего не замечая. Но с точки зрения внешнего наблюдателя, находящегося в Интернет, в сети работает лишь одна машина (наш маршрутизатор с активированным механизмом NAT), а еще две, три, сто машин из локальной сети, находящейся за маршрутизатором для наблюдателя не видны совсем.

С одной стороны, механизм NAT очень удобен. Ведь, получив лишь один IP адрес (одно подключение) от провайдера, можно вывести в глобальную сеть хоть сотню машин, буквально сделав несколько кликов мышкой. Плюс локальная сеть автоматически защищается от злоумышленников - она просто не видна для внешнего мира, за исключением самого компьютера-маршрутизатора (многочисленные уязвимости семейства ОС от Microsoft опять выпадают за рамки этой статьи, отмечу лишь, что активировать защиту, т.е. включать файрвол на внешнем интерфейсе маршрутизатора, о чем было сказано выше, нужно обязательно). Но есть и обратная сторона медали. Не все протоколы (и, соответственно, не все приложения) смогут работать через NAT. Например, ICQ откажется пересылать файлы. Netmeeting, скорее всего, не заработает, могут возникнуть проблемы с доступом на некоторые ftp-сервера (работающие в активном режиме) и т.д. Но для подавляющего большинства программ механизм NAT останется полностью прозрачным. Они его просто не заметят, продолжив работать, как ни в чем не бывало.

Но. Что делать, если внутри локальной сети стоит WEB или какой-либо другой сервер, который должен быть виден снаружи? Любой пользователь, обратившись по адресу http://my.cool.network.ru (где my.cool.network.ru - адрес маршрутизатора), попадет на 80й порт (по умолчанию WEB сервера отвечают именно на этому порту) маршрутизатора, который ничего не знает о WEB-сервере (ибо он стоит не на нем, а где-то внутри локальной сети ЗА ним). Поэтому маршрутизатор просто ответит отлупом (на сетевом уровне), показав тем самым, что он действительно ничего не слышал о WEB (или каком-либо ином) сервере.

Что делать? В этом случае надо настроить редирект (перенаправление) некоторых портов с внешнего интерфейса маршрутизатора внутрь локальной сети. Например, настроим перенаправление порта 80 внутрь, на веб сервер (который у нас стоит на компьютере 169.254.10.10):

В том же меню, где активировали NAT, жмем кнопку Settings и выбираем в появившемся окне Web Server (HTTP).

Так как мы выбрали стандартный протокол HTTP, который уже был занесен в список до нас, то выбирать внешний порт (External Port), на который будет принимать соединения маршрутизатор и внутренний порт (Internel Port) на который будет перенаправляться соединение в локальную сеть, не нужно, - там уже выставлены стандартное значение 80. Тип протокола (TCP или UDP) уже так же определен. Осталось лишь задать IP адрес машины в локальной сети, куда будет перенаправлено входящее из Интернет соединение на веб-сервер. Хотя, как меня правильно поправили в форуме, лучше задавать не IP адрес, а имя этой машины. Так как IP-адрес (который выдается автоматически, DHCP сервером), вполне может сменится, а имя машины - нет (его можно поменять лишь вручную).

Теперь с точки зрения внешнего наблюдателя (находящегося в Интернет), на маршрутизаторе (локальная сеть за ним по прежнему не видна) на 80м порту появился веб-сервер. Он (наблюдатель) будет с ним работать как обычно, не предполагая, что на самом то деле веб-сервер находится совсем на другой машине. Удобно? Полагаю, да.

Если потребуется дать доступ извне к какому-нибудь нестандартному сервису (или стандартному, но не занесенному заранее в список), то вместо выбора сервисов из списка в вышеприведенном скриншоте, надо будет нажать кнопку Add и ввести все требуемые значения вручную.

Вместо заключения

В первой части цикла статей была рассмотрена возможность организации доступа локальной сети в Интернет с помощью встроенных возможностей Windows XP от компании Microsoft. Не следует забывать, что полученный в результате настройки компьютер-маршрутизатор должен работать постоянно, ведь если он будет выключен, остальные хосты из локальной сети доступ в Интернет потеряют. Но постоянно работающий компьютер - не всегда удобно (шумит, греется, да и электричество кушает).

Варианты организации доступа локальных сетей в глобальную, не ограничиваются вышеописанным. В следующих статьях будут рассмотрены другие способы, например посредством аппаратных маршрутизаторов. Последние уже фигурировали в обзорах на нашем сайте, но в тех статьях упор делался на тестирование возможностей, без особых объяснений, что эти возможности дают пользователю. Постараемся исправить это досадное упущение.

Навигация

  • Часть первая - построение простейшей проводной сети
  • Часть третья - использование WEP/WPA шифрования в беспроводных сетях

Московский Государственный Горный Университет

Кафедра Автоматизированных Систем Управления

Курсовой проект

по дисциплине «Сети ЭВМ и телекоммуникации»

на тему: «Проектирование локальной вычислительной сети»

Выполнил:

Ст. гр. АС-1-06

Юрьева Я.Г.

Проверил:

проф., д. т. н. Шек В.М.

Москва 2009

Введение

1 Задание на проектирование

2 Описание локально-вычислительной сети

3 Топология сети

4 Схема локальной сети

5 Эталонная модель OSI

6 Обоснование выбора технологии развертывания локальной сети

7 Сетевые протоколы

8 Аппаратное и программное обеспечение

9 Расчет характеристик сети

Список используемой литературы

Локальная вычислительная сеть (ЛВС) представляет собой коммуникационную систему, объединяющую компьютеры и периферийное оборудование на ограниченной территории, обычно не больше нескольких зданий или одного предприятия. В настоящее время ЛВС стала неотъемлемым атрибутом в любых вычислительных системах, имеющих более 1 компьютера.

Основные преимущества, обеспечиваемые локальной сетью – возможность совместной работы и быстрого обмена данными, централизованное хранение данных, разделяемый доступ к общим ресурсам, таким как принтеры, сеть Internet и другие.

Еще одной важнейшей функцией локальной сети является создание отказоустойчивых систем, продолжающих функционирование (пусть и не в полном объеме) при выходе из строя некоторых входящих в них элементов. В ЛВС отказоустойчивость обеспечивается путем избыточности, дублирования; а также гибкости работы отдельных входящих в сеть частей (компьютеров).

Конечной целью создания локальной сети на предприятии или в организации является повышение эффективности работы вычислительной системы в целом.

Построение надежной ЛВС, соответствующей предъявляемым требованиям по производительности и обладающей наименьшей стоимостью, требуется начинать с составления плана. В плане сеть разделяется на сегменты, подбирается подходящая топология и аппаратное обеспечение.

Топологию «шина» часто называют «линейной шиной» (linear bus). Данная топология относится к наиболее простым и широко распространенным топологиям. В ней используется один кабель, именуемый магистралью или сегментом, вдоль которого подключены все компьютеры сети.

В сети с топологией «шина» (рис.1.) компьютеры адресуют данные конкретному компьютеру, передавая их по кабелю в виде электрических сигналов.

Рис.1. Топология «Шина»

Данные в виде электрических сигналов передаются всем компьютерам сети; однако информацию принимает только тот, адрес которого соответствует адресу получателя, зашифрованному в этих сигналах. Причем в каждый момент времени только один компьютер может вести передачу.

Так как данные в сеть передаются лишь одним компьютером, ее производительность зависит от количества компьютеров, подключенных к шине. Чем их больше, т.е. чем больше компьютеров, ожидающих передачи данных, тем медленнее сеть.

Однако вывести прямую зависимость между пропускной способностью сети и количеством компьютеров в ней нельзя. Так как кроме числа компьютеров, на быстродействие сети влияет множество факторов, в том числе:

· характеристики аппаратного обеспечения компьютеров в сети;

· частота, с которой компьютеры передают данные;

· тип работающих сетевых приложений;

· тип сетевого кабеля;

· расстояние между компьютерами в сети.

Шина - пассивная топология. Это значит, что компьютеры только «слушают» передаваемые по сети данные, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе остальных. В активных топологиях компьютеры регенерируют сигналы и передают их по сети.

Отражение сигнала

Данные, или электрические сигналы, распространяются по всей сети - от одного конца кабеля к другому. Если не предпринимать никаких специальных действий, сигнал, достигая конца кабеля, будет отражаться и не позволит другим компьютерам осуществлять передачу. Поэтому, после того как данные достигнут адресата, электрические сигналы необходимо погасить.

Терминатор

Чтобы предотвратить отражение электрических сигналов, на каждом конце кабеля устанавливают терминаторы (terminators), поглощающие эти сигналы. Все концы сетевого кабеля должны быть к чему-нибудь подключены, например к компьютеру или к баррел-коннектору - для увеличения длины кабеля. К любому свободному - неподключенному - концу кабеля должен быть подсоединен терминатор, чтобы предотвратить отражение электрических сигналов.

Нарушение целостности сети

Разрыв сетевого кабеля происходит при его физическом разрыве или отсоединении одного из его концов. Возможна также ситуация, когда на одном или нескольких концах кабеля отсутствуют терминаторы, что приводит к отражению электрических сигналов в кабеле и прекращению функционирования сети. Сеть «падает».

Сами по себе компьютеры в сети остаются полностью работоспособными, но до тех пор, пока сегмент разорван, они не могут взаимодействовать друг с другом.

Концепция топологии сети в виде звезды (рис.2.) пришла из области больших ЭВМ, в которой головная машина получает и обрабатывает все данные с периферийных устройств как активный узел обработки данных. Этот принцип применяется в системах передачи данных. Вся информация между двумя периферийными рабочими местами проходит через центральный узел вычислительной сети.

Рис.2. Топология «Звезда»

Пропускная способность сети определяется вычислительной мощностью узла и гарантируется для каждой рабочей станции. Коллизий (столкновений) данных не возникает. Кабельное соединение довольно простое, так как каждая рабочая станция связана с узлом. Затраты на прокладку кабелей высокие, особенно когда центральный узел географически расположен не в центре топологии.

При расширении вычислительных сетей не могут быть использованы ранее выполненные кабельные связи: к новому рабочему месту необходимо прокладывать отдельный кабель из центра сети.

Топология в виде звезды является наиболее быстродействующей из всех топологий вычислительных сетей, поскольку передача данных между рабочими станциями проходит через центральный узел (при его хорошей производительности) по отдельным линиям, используемым только этими рабочими станциями. Частота запросов передачи информации от одной станции к другой невысокая по сравнению с достигаемой в других топологиях.

Производительность вычислительной сети в первую очередь зависит от мощности центрального файлового сервера. Он может быть узким местом вычислительной сети. В случае выхода из строя центрального узла нарушается работа всей сети. Центральный узел управления – файловый сервер реализует оптимальный механизм защиты против несанкционированного доступа к информации. Вся вычислительная сеть может управляться из ее центра.

Достоинства

· Выход из строя одной рабочей станции не отражается на работе всей сети в целом;

· Хорошая масштабируемость сети;

· Лёгкий поиск неисправностей и обрывов в сети;

· Высокая производительность сети;

· Гибкие возможности администрирования.

Недостатки

· Выход из строя центрального концентратора обернётся неработоспособностью сети в целом;

· Для прокладки сети зачастую требуется больше кабеля, чем для большинства других топологий;

· Конечное число рабочих станций, т.е. число рабочих станций ограничено количеством портов в центральном концентраторе.

При кольцевой топологии (рис.3.) сети рабочие станции связаны одна с другой по кругу, т.е. рабочая станция 1 с рабочей станцией 2, рабочая станция 3 с рабочей станцией 4 и т.д. Последняя рабочая станция связана с первой. Коммуникационная связь замыкается в кольцо.

Рис.3. Топология «Кольцо»

Прокладка кабелей от одной рабочей станции до другой может быть довольно сложной и дорогостоящей, особенно если географическое расположение рабочих станций далеко от формы кольца (например, в линию). Сообщения циркулируют регулярно по кругу. Рабочая станция посылает по определенному конечному адресу информацию, предварительно получив из кольца запрос. Пересылка сообщений является очень эффективной, так как большинство сообщений можно отправлять «в дорогу» по кабельной системе одно за другим. Очень просто можно сделать кольцевой запрос на все станции.

Продолжительность передачи информации увеличивается пропорционально количеству рабочих станций, входящих в вычислительную сеть.

Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информации, и в случае выхода из строя хотя бы одной из них вся сеть парализуется. Неисправности в кабельных соединениях локализуются легко.

Подключение новой рабочей станции требует кратко срочного выключения сети, так как во время установки кольцо должно быть разомкнуто. Ограничения на протяженность вычислительной сети не существует, так как оно, в конечном счете, определяется исключительно расстоянием между двумя рабочими станциями. Специальной формой кольцевой топологии является логическая кольцевая сеть. Физически она монтируется как соединение звездных топологий.

Отдельные звезды включаются с помощью специальных коммутаторов (англ. Hub – концентратор), которые по-русски также иногда называют «хаб».

При создании глобальных (WAN) и региональных (MAN) сетей используется чаще всего Ячеистая топология MESH (рис.4.). Первоначально такая топология была создана для телефонных сетей. Каждый узел в такой сети выполняет функции приема, маршрутизации и передачи данных. Такая топология очень надежна (при выходе из строя любого сегмента существует маршрут, по которому данные могут быть переданы заданному узлу) и обладает высокой устойчивостью к перегрузкам сети (всегда может быть найден маршрут, наименее загруженный передачей данных).


Рис.4. Ячеистая топология.

При разработке сети была выбрана топология «звезда» ввиду простой реализации и высокой надежности (к каждому компьютеру идет отдельный кабель).

1) FastEthernet с использованием 2 коммутаторов.(рис. 5)

2 сегмент
1 сегмент

Рис. 6. Топология FastEthernet с использованием 1 маршрутизатора и 2 коммутаторов.

4Схема локальной сети

Ниже представлена схема расположения компьютеров и протяжки кабелей по этажам (рис.7,8).


Рис. 7. Схема расположения компьютеров и прокладки кабеля на 1 этаже.

Рис. 8. Схема расположения компьютеров и прокладки кабеля на 2 этаже.

Данная схема разработана с учетом характерных особенностей здания. Кабели будут расположены под искусственным напольным покрытием, в специально отведенных для них каналах. Протяжка кабеля на второй этаж будет осуществляться через телекоммуникационный шкаф, который расположен в подсобном помещении, которое используется как серверная комната, где располагаются сервер и маршрутизатор. Коммутаторы расположены в основных помещениях в тумбах.

Уровни взаимодействуют сверху вниз и снизу вверх посредством интерфейсов и могут еще взаимодействовать с таким же уровнем другой системы с помощью протоколов.

Протоколы, использующиеся на каждом уровне модели OSI, представлены в таблице 1.

Таблица 1.

Протоколы уровней модели OSI

Уровень OSI Протоколы
Прикладной HTTP, gopher, Telnet, DNS, SMTP, SNMP, CMIP, FTP, TFTP, SSH, IRC, AIM, NFS, NNTP, NTP, SNTP, XMPP, FTAM, APPC, X.400, X.500, AFP, LDAP, SIP, ITMS, ModbusTCP, BACnetIP, IMAP, POP3, SMB, MFTP, BitTorrent, eD2k, PROFIBUS
Представления HTTP, ASN.1, XML-RPC, TDI, XDR, SNMP, FTP, Telnet, SMTP, NCP, AFP
Сеансовый ASP, ADSP, DLC, Named Pipes, NBT, NetBIOS, NWLink, Printer Access Protocol, Zone Information Protocol, SSL, TLS, SOCKS
Транспортный TCP, UDP, NetBEUI, AEP, ATP, IL, NBP, RTMP, SMB, SPX, SCTP, DCCP, RTP, TFTP
Сетевой IP, IPv6, ICMP, IGMP, IPX, NWLink, NetBEUI, DDP, IPSec, ARP, RARP, DHCP, BootP, SKIP, RIP
Канальный STP, ARCnet, ATM, DTM, SLIP, SMDS, Ethernet, FDDI, Frame Relay, LocalTalk, Token ring, StarLan, L2F, L2TP, PPTP, PPP, PPPoE, PROFIBUS
Физический RS-232, RS-422, RS-423, RS-449, RS-485, ITU-T, xDSL, ISDN, T-carrier (T1, E1), модификациистандарта Ethernet: 10BASE-T, 10BASE2, 10BASE5, 100BASE-T (включает 100BASE-TX, 100BASE-T4, 100BASE-FX), 1000BASE-T, 1000BASE-TX, 1000BASE-SX

Следует понимать, что подавляющее большинство современных сетей в силу исторических причин лишь в общих чертах, приближённо, соответствуют эталонной модели ISO/OSI.

Реальный стек протоколов OSI, разработанный как часть проекта, был воспринят многими как слишком сложный и фактически нереализуемый. Он предполагал упразднение всех существующих протоколов и их замену новыми на всех уровнях стека. Это сильно затруднило реализацию стека и послужило причиной для отказа от него многих поставщиков и пользователей, сделавших значительные инвестиции в другие сетевые технологии. В дополнение, протоколы OSI разрабатывались комитетами, предлагавшими различные и иногда противоречивые характеристики, что привело к объявлению многих параметров и особенностей необязательными. Поскольку слишком многое было необязательно или предоставлено на выбор разработчика, реализации различных поставщиков просто не могли взаимодействовать, отвергая тем самым саму идею проекта OSI.

В результате попытка OSI договориться об общих стандартах сетевого взаимодействия была вытеснена стеком протоколов TCP/IP, используемым в Интернете, и его более простым, прагматичным подходом к компьютерным сетям. Подход Интернета состоял в создании простых протоколов с двумя независимыми реализациями, требующимися для того, чтобы протокол мог считаться стандартом. Это подтверждало практическую реализуемость стандарта. Например, определения стандартов электронной почты X.400 состоят из нескольких больших томов, а определение электронной почты Интернета (SMTP) - всего несколько десятков страниц в RFC 821. Всё же стоит заметить, что существуют многочисленные RFC, определяющие расширения SMTP. Поэтому на данный момент полная документация по SMTP и расширениям также занимает несколько больших книг.

Большинство протоколов и спецификаций стека OSI уже не используются, такие как электронная почта X.400. Лишь немногие выжили, часто в значительно упрощённом виде. Структура каталогов X.500 до сих пор используется, в основном, благодаря упрощению первоначального громоздкого протокола DAP, получившему название LDAP и статус стандарта Интернета.

Свёртывание проекта OSI в 1996 году нанесло серьёзный удар по репутации и легитимности участвовавших в нём организаций, особенно ISO. Наиболее крупным упущением создателей OSI был отказ увидеть и признать превосходство стека протоколов TCP/IP.

Для выбора технологии рассмотрим таблицу сравнений технологий FDDI, Ethernet и TokenRing (таблица 2).

Таблица 2. Характеристики технологий FDDI, Ethernet, TokenRing

Характеристика FDDI Ethernet Token Ring
Битовая скорость, Мбит/с 100 10 16
Топология Двойное кольцо деревьев Шина/звезда Звезда/кольцо
Среда передачиданных Оптоволокно, неэкранированная витая пара категории 5

Толстый коаксиал, тонкий коаксиал,

Экранированная или неэкранированная витая пара, оптоволокно
Максимальная длина сети (без мостов)

(100 км на кольцо)

2500 м 40000 м
Максимальноерасстояние между узлами 2 км (не более 11 дБ потерь между узлами) 2500 м 100 м
Максимальноеколичество узлов

(1000 соединений)

1024

260 для экранированной витой пары,

72 для неэкранированной витой пары

После анализа таблицы характеристик технологий FDDI, Ethernet, TokenRing, очевиден выбор технологии Ethernet (вернее ее модификации FastEthernet), которая учитывает все требованиям нашей локальной сети. Т.к технология TokenRing обеспечивает скорость передачи данных до 16 мбит\сек, то мы ее исключаем из дальнейшего рассмотрения, а из-за сложность реализации технологии FDDI, наиболее разумно будет использовать Ethernet.

7Сетевые протоколы

Семиуровневая модель OSI является теоретической, и содержит ряд недоработок. Реальные сетевые протоколы вынуждены отклоняться от неё, обеспечивая непредусмотренные возможности, поэтому привязка некоторых из них к уровням OSI является несколько условной.

Основная недоработка OSI - непродуманный транспортный уровень. На нём OSI позволяет обмен данными между приложениями (вводя понятие порта - идентификатора приложения), однако, возможность обмена простыми дейтаграммами в OSI не предусмотрена - транспортный уровень должен образовывать соединения, обеспечивать доставку, управлять потоком и т. п. Реальные же протоколы реализуют такую возможность.

Сетевые транспортные протоколы обеспечивают базовые функции, необходимые компьютерам для коммуникаций с сетью. Такие протоколы реализуют полные эффективные каналы коммуникаций между компьютерами.

Транспортный протокол можно рассматривать как зарегистрированную почтовую службу. Транспортный протокол гарантирует, что передаваемые данные доходят до заданного адресата, проверяя получаемую от него квитанцию. Он выполняет контроль и исправление ошибок без вмешательства более высокого уровня.

Основными сетевыми протоколами являются:

NWLink IPX/SPX/NetBIOS-совместимый транспортный протокол (NWLink) - это NDIS-совместимая 32-разрядная реализация протокола IPX/SPX фирмы Novell. Протокол NWLink поддерживает два интерфейса прикладного программирования (API): NetBIOS и Windows Sockets. Эти интерфейсы позволяют обеспечить связь компьютеров под управлением Windows между собой, а также с серверами NetWare.

Транспортный драйвер NWLink представляет собой реализацию протоколов низкого уровня NetWare, таких как IPX, SPX, RIPX (Routing Information Protocol over IPX) и NBIPX (NetBIOS over IPX). Протокол IPX управляет адресацией и маршрутизацией пакетов данных внутри сетей и между ними. Протокол SPX обеспечивает надежную доставку данных, поддерживая правильность последовательности их передачи и механизм подтверждений. Протокол NWLink обеспечивает совместимость с NetBIOS за счет уровня NetBIOS поверх протокола IPX.

IPX/SPX (от англ. Internetwork Packet eXchange/Sequenced Packet eXchange) - стек протоколов, используемый в сетях Novell NetWare. Протокол IPX обеспечивает сетевой уровень (доставку пакетов, аналог IP), SPX - транспортный и сеансовый уровень (аналог TCP).

Протокол IPX предназначен для передачи дейтограмм в системах, неориентированных на соединение (также как и IP или NETBIOS, разработанный IBM и эмулируемый в Novell), он обеспечивает связь между NetWare серверами и конечными станциями.

SPX (Sequence Packet eXchange) и его усовершенствованная модификация SPX II представляют собой транспортные протоколы 7-уровневой модели ISO. Это протокол гарантирует доставку пакета и использует технику скользящего окна (отдаленный аналог протокола TCP). В случае потери или ошибки пакет пересылается повторно, число повторений задается программно.

NetBEUI - это пpотокол, дополняющий спецификацию интеpфейса NetBIOS, используемую сетевой опеpационной системой. NetBEUI фоpмализует кадp тpанспоpтного уpовня, не стандаpтизованный в NetBIOS. Он не соответствует какому-то конкpетному уpовню модели OSI, а охватывает тpанспоpтный уpовень, сетевой уpовень и подуpовень LLC канального уpовня. NetBEUI взаимодействует напpямую с NDIS уpовня MAC. Таким обpазом это не маpшpутизиpуемый пpотокол.

Транспортной частью NetBEUI является NBF (NetBIOS Frame protocol). Сейчас вместо NetBEUI обычно применяется NBT (NetBIOS over TCP/IP).

Как правило NetBEUI используется в сетях где нет возможности использовать NetBIOS, например, в компьютерах с установленной MS-DOS.

Повторитель (англ. repeater) - предназначен для увеличения расстояния сетевого соединения путем повторения электрического сигнала "один в один". Бывают однопортовые повторители и многопортовые. В сетях на витой паре повторитель является самым дешевым средством объединения конечных узлов и других коммуникационных устройств в единый разделяемый сегмент. Повторители Ethernet могут иметь скорость 10 или 100 Мбит/с (FastEthernet), единую для всех портов. Для GigabitEthernet повторители не используются.

Мост (от англ. bridge - мост) является средством передачи кадров между двумя (и более) логически разнородными сегментами. По логике работы является частным случаем коммутатора. Скорость обычно 10 Мбит/с (для FastEthernet чаще используются коммутаторы).

Концентратор или хаб (от англ. hub - центр деятельности) - сетевое устройство, для объединения нескольких устройств Ethernet в общий сегмент. Устройства подключаются при помощи витой пары, коаксиального кабеля или оптоволокна. Хаб является частным случаем концентратора

Концентратор работает на физическом уровне сетевой модели OSI, повторяет приходящий на один порт сигнал на все активные порты. В случае поступления сигнала на два и более порта одновременно возникает коллизия, и передаваемые кадры данных теряются. Таким образом, все подключенные к концентратору устройства находятся в одном домене коллизий. Концентраторы всегда работают в режиме полудуплекса, все подключенные устройства Ethernet разделяют между собой предоставляемую полосу доступа.

Многие модели хабов имеют простейшую защиту от излишнего количества коллизий, возникающих по причине одного из подключенных устройств. В этом случае они могут изолировать порт от общей среды передачи. По этой причине, сетевые сегменты, основанные на витой паре гораздо стабильнее в работе сегментов на коаксиальном кабеле, поскольку в первом случае каждое устройство может быть изолировано хабом от общей среды, а во втором случае несколько устройств подключаются при помощи одного сегмента кабеля, и, в случае большого количества коллизий, концентратор может изолировать лишь весь сегмент.

В последнее время концентраторы используются достаточно редко, вместо них получили распространение коммутаторы - устройства, работающие на канальном уровне модели OSI и повышающие производительность сети путём логического выделения каждого подключенного устройства в отдельный сегмент, домен коллизий.

Коммутатор или switch (от англ. - переключатель) Коммутатор (switch, switching hub) по принципу обработки кадров ничем не отличается от моста. Основное его отличие от моста состоит в том, что он является своего рода коммуникационным мультипроцессором, так как каждый его порт оснащен специализированным процессором, который обрабатывает кадры по алгоритму моста независимо от процессоров других портов. За счет этого общая производительность коммутатора обычно намного выше производительности традиционного моста, имеющего один процессорный блок. Можно сказать, что коммутаторы - это мосты нового поколения, которые обрабатывают кадры в параллельном режиме.

Это устройство, предназначенное для соединения нескольких узлов компьютерной сети в пределах одного сегмента. В отличие от концентратора, который распространяет трафик от одного подключенного устройства ко всем остальным, коммутатор передает данные только непосредственно получателю. Это повышает производительность и безопасность сети, избавляя остальные сегменты сети от необходимости (и возможности) обрабатывать данные, которые им не предназначались.

Коммутатор работает на канальном уровне модели OSI, и потому в общем случае может только объединять узлы одной сети по их MAC-адресам. Для соединения нескольких сетей на основе сетевого уровня служат маршрутизаторы.

Коммутатор хранит в памяти специальную таблицу (ARP-таблицу), в которой указывается соответствие MAC-адреса узла порту коммутатора. При включении коммутатора эта таблица пуста, и он работает в режиме обучения. В этом режиме поступающие на какой-либо порт данные передаются на все остальные порты коммутатора. При этом коммутатор анализирует пакеты данных, определяя MAC-адрес компьютера-отправителя, и заносит его в таблицу. Впоследствии, если на один из портов коммутатора поступит пакет, предназначенный для этого компьютера, этот пакет будет отправлен только на соответствующий порт. Со временем коммутатор строит полную таблицу для всех своих портов, и в результате трафик локализуется.

Коммутаторы подразделяются на управляемые и неуправляемые (наиболее простые). Более сложные коммутаторы позволяют управлять коммутацией на канальном и сетевом уровне модели OSI. Обычно их именуют соответственно, например Level 2 Switch или просто, сокращенно L2. Управление коммутатором может осуществляться посредством протокола Web-интерфейса, SNMP, RMON (протокол, разработанный Cisco) и т.п. Многие управляемые коммутаторы позволяют выполнять дополнительные функции: VLAN, QoS, агрегирование, зеркалирование. Сложные коммутаторы можно объединять в одно логическое устройство - стек, с целью увеличения числа портов (например, можно объединить 4 коммутатора с 24 портами и получить логический коммутатор с 96 портами).

Преобразователь интерфейсов или конвертер (англ. mediaconverter) позволяет осуществлять переходы от одной среды передачи к другой (например, от витой пары к оптоволокну) без логического преобразования сигналов. Благодаря усилению сигналов эти устройства могут позволять преодолевать ограничения на длину линий связи (если ограничения не связаны с задержкой распространения). Используются для связи оборудования с разнотипными портами.

Выпускается три типа конвертеров:

× Преобразователь RS-232 <–> RS-485;

× Преобразователь USB <–> RS-485;

× Преобразователь Ethernet <–> RS-485.

Преобразователь RS-232 <–> RS-485 преобразует физические параметры интерфейса RS-232 в сигналы интерфейса RS-485. Может работать в трех режимах приема-передачи. (В зависимости от установленного в конвертере программного обеспечения и состояния переключателей на плате конвертера).

Преобразователь USB <–> RS-485 - этот конвертер предназначен для организации интерфейса RS-485 на любом компьютере, имеющем интерфейс USB. Конвертер выполнен в виде отдельной платы, подключаемой к разъёму USB. Питание конвертера осуществляется непосредственно от порта USB. Драйвер конвертера позволяет создать для интерфейса USB виртуальный СОМ-порт и работать с ним как с обычным портом RS-485 (по аналогии с RS-232). Устройство обнаруживается сразу при подключении к порту USB.

Преобразователь Ethernet <–> RS-485 - этот конвертер предназначен для обеспечения возможности передачи сигналов интерфейса RS-485 по локальной сети. Конвертер имеет свой IP-адрес (устанавливаемый пользователем) и позволяет осуществить доступ к интерфейсу RS-485 с любого компьютера подключенного к локальной сети и установленным соответствующим программным обеспечением. Для работы с конвертером поставляются 2 программы: Port Redirector – поддержка интерфейса RS-485 (СОМ-порта) на уровне сетевой карты и конфигуратор Lantronix, позволяющий установить привязку конвертера к локальной сети пользователя, а также задать параметры интерфейса RS-485 (скорость передачи, количество бит данных и т.д.) Конвертер обеспечивает полностью прозрачную приемо-передачу данных в любом направлении.

Маршрутиза́тор или ро́утер (от англ. router) - сетевое устройство, используемое в компьютерных сетях передачи данных, которое, на основании информации о топологии сети (таблицы маршрутизации) и определённых правил, принимает решения о пересылке пакетов сетевого уровня модели OSI их получателю. Обычно применяется для связи нескольких сегментов сети.

Традиционно, маршрутизатор использует таблицу маршрутизации и адрес получателя, который находится в пакетах данных, для дальнейшей передачи данных. Выделяя эту информацию, он определяет по таблице маршрутизации путь, по которому следует передать данные и направляет пакет по этому маршруту. Если в таблице маршрутизации для адреса нет описанного маршрута, пакет отбрасывается.

Существуют другие способы определения маршрута пересылки пакетов, когда, например, используется адрес отправителя, используемые протоколы верхних уровней и другая информация, содержащаяся в заголовках пакетов сетевого уровня. Нередко маршрутизаторы могут осуществлять трансляцию адресов отправителя и получателя (англ. NAT, Network Address Translation), фильтрацию транзитного потока данных на основе определённых правил с целью ограничения доступа, шифрование/дешифрование передаваемых данных и т. д.

Маршрутизаторы помогают уменьшить загрузку сети, благодаря её разделению на домены коллизий и широковещательные домены, а также фильтрации пакетов. В основном их применяют для объединения сетей разных типов, зачастую несовместимых по архитектуре и протоколам, например для объединения локальных сетей Ethernet и WAN-соединений, использующих протоколы DSL, PPP, ATM, Frame relay и т. д. Нередко маршрутизатор используется для обеспечения доступа из локальной сети в глобальную сеть Интернет, осуществляя функции трансляции адресов и межсетевого экрана.

В качестве маршрутизатора может выступать как специализированное устройство, так и PC компьютер, выполняющий функции простейшего роутера.

Моде́м (аббревиатура, составленная из слов мо дулятор-дем одулятор) - устройство, применяющееся в системах связи и выполняющее функцию модуляции и демодуляции. Частным случаем модема является широко применяемое периферийное устройство для компьютера, позволяющее ему связываться с другим компьютером, оборудованным модемом, через телефонную сеть (телефонный модем) или кабельную сеть (кабельный модем).

Конечное сетевое оборудование является источником и получателем информации, передаваемой по сети.

Компьютер (рабочая станция) , подключенный к сети, является самым универсальным узлом. Прикладное использование компьютера в сети определяется программным обеспечением и установленным дополнительным оборудованием. Для дальних коммуникаций используется модем, внутренний или внешний. С точки зрения сети, «лицом» компьютера является его сетевой адаптер. Тип сетевого адаптера должен соответствовать назначению компьютера и его сетевой активности.

Сервер является также компьютером, но с большими ресурсами. Это подразумевает его более высокую сетевую активность и значимость. Серверы желательно подключать к выделенному порту коммутатора. При установке двух и более сетевых интерфейсов (в том числе и модемного подключения) и соответствующего программного обеспечения сервер может играть роль маршрутизатора или моста. Серверы, как правило, должны иметь высокопроизводительную операционную систему.

В таблице 5 приведены параметры типовой рабочей станции и ее стоимость для разрабатываемой локальной сети.

Таблица 5.

Рабочая станция

Системный блок.GH301EA HP dc5750 uMT A64 X2-4200+(2.2GHz),1GB,160GB,ATI Radeon X300,DVD+/-RW,Vista Business
Компьютер Hewlett-Packard GH301EA серии dс 5750. Данный системный блок оборудован процессором AMD Athlon™ 64 X2 4200+ c частотой 2.2 ГГц, 1024 Mб оперативной памяти DDR2, жестким диском на 160 Гб, DVD-RW приводом и установленной ОС Windows Vista Business.
Цена:16 450.00 руб.
Монитор. TFT 19 “Asus V W1935
Цена:6 000,00 руб.
Устройства ввода
Мышь Genius GM-03003 172 руб.
Клавиатура 208 руб.
Общая стоимость 22 830 руб.

В Таблице 6 приведены параметры сервера.


Таблица 6.

Сервер

DESTEN Системныйблок DESTEN eStudio 1024QM
Процессор INTEL Core 2 Quad Q6600 2.4GHz 1066MHz 8Mb LGA775 OEM Материнскаяплата Gigabyte GA-P35-DS3R ATX Модульпамяти DDR-RAM2 1Gb 667Mhz Kingston KVR667D2N5/1G - 2 Жесткийдиск 250 Gb Hitachi Deskstar T7K500 HDP725025GLA380 7200RPM 8Mb SATA-2 - 2 Видеоадаптер 512MB Zotac PCI-E 8600GT DDR2 128 bit DVI (ZT-86TEG2P-FSR) Привод DVD RW NEC AD-7200S-0B SATA ЧерныйКорпус ZALMAN HD160XT BLACK.
Цена:50 882.00 руб.

Монитор. TFT 19 “Asus V W1935

Тип: ЖК Технология ЖК: TN Диагональ: 19" Формат экрана: 5:4 Макс. разрешение: 1280 x 1024 Входы: VGA Вертикальная развертка: 75 Гц Горизонтальная развертка: 81 КГц
Цена: 6 000,00 руб.
Устройства ввода
Мышь Genius GM-03003 172 руб.
Клавиатура Logitech Value Sea Grey (refresh) PS/2 208 руб.
Общая стоимость 57 262 руб.

В программное обеспечение сервера входят:

× Операционная система WindowsServer 2003 SP2+R2

× Пакетпрограмм ABBY FineReader Corporate Edition v8.0 (серверная лицензия)

× Программа для администрирования сети SymantecpcAnywhere 12 (сервер)

В программное обеспечение рабочей станции входят:

× Операционная система WindowsXPSP2

× Антивирусная программа NOD 32 AntiVirusSystem.

× Пакетпрограмм Microsoft Office 2003 (pro)

× Пакет программ ABBY FineReader Corporate Edition v8.0 (клиентская лицензия)

× Программа для администрирования сети Symantec pcAnywhere 12 (клиент)

× Пользовательские программы

Для реальных сетей важен такой показатель производительности, как показатель использования сети (networkutilization), который представляет собой долю в процентах от суммарной пропускной способности (не поделенной между отдельными абонентами). Он учитывает коллизии и другие факторы. Ни сервер, ни рабочие станции не содержат средств для определения показателя использования сети, для этого предназначены специальные, не всегда доступные из-за высокой стоимости аппаратно-программные средства типа анализаторов протоколов.

Считается, что для загруженных систем Ethernet и FastEthernet хорошим значением показателя использования сети является 30%. Это значение соответствует отсутствию длительных простоев в работе сети и обеспечивает достаточный запас в случае пикового повышения нагрузки. Однако если показатель использования сети значительное время составляет 80...90% и более, то это свидетельствует о практически полностью используемых (в данное время) ресурсах, но не оставляет резерва на будущее.

Для проведения расчетов и выводов следует рассчитать производительность в каждом сегменте сети.

Вычислим полезную нагрузку Pп:


где n – количество сегментов проектируемой сети.

P0 = 2*16 = 32Мбит/сек

Полная фактическая нагрузка Pф рассчитывается с учетом коллизий и величины задержек доступа к среде передачи данных:

, Мбит/с, (3)

где к – задержка доступа к среде передачи данных: для семейства технологий Ethernet – 0,4, для TokenRing – 0,6, для FDDI – 0,7.

Рф = 32*(1+0.4) = 44,8 Мбит/с

Т. к. фактическая нагрузка Pф > 10 Мбит/с, то, как и предполагалось ранее, данную сеть невозможно реализовать с помощью стандарта Ethernet, необходимо применить технологию FastEthernet (100 Мбит/с).

Т.к. данной в сети мы не используем концентраторы, то рассчитывать время двойного оборота сигнала не требуется.(Сигнал коллизий отсутствует)

В таблице 7 приведен итоговый расчет стоимости сети, построенной на 2 коммутаторах. (Вариант 1 ).

Таблица 6.

В Таблице 8 приведен итоговый расчет стоимости сети, построенной на 2 коммутаторах и 1 маршрутизаторе. (Вариант 2 ).

Таблица 8.

Наименование Цена за 1 ед. (руб.) Всего (руб.)
1 Вилки RJ-45 86 2 172
2 Кабель RJ-45 UTP, lev.5e 980м. 20 19 600
3 Коммутатор TrendNet N-Way Switch TEG S224 (10/100Mbps, 24 port, +2 1000Mbps Rack Mount) 2 3714 7 428
4 Маршрутизатор , Router D-Link DIR-100 1 1 250 1 250
5 Рабочая станция 40 22 830 913 200
6 Сервер Sunrise XD (Tower/RackMount) 1 57 262 57 262
Итого: 998912

В итоге получаем два варианта сети, которые не значительно отличаются по стоимости и отвечают стандартам построения сети. Первый вариант сети уступает второму варианту, в показателе надежности, даже несмотря на то, что проектирование сети по второму варианту незначительно дороже. Следовательно, наилучший вариант построения локальной сети будет вариант два – локальная сеть, построенная на 2 коммутаторах и маршрутизаторе.

Для надёжной работы и повышения производительности сети следует вносить изменения в структуру сети только с учётом требований стандарта.

Для защиты данных от вирусов необходимо установить антивирусные программы (например, NOD32 AntiVirusSystem), а для восстановления повреждённых или ошибочно удалённых данных следует использовать специальные утилиты (например, утилиты, входящие в состав пакета NortonSystemWorks).

Хотя сеть построена с запасом производительности, всё равно следует беречь сетевой трафик, поэтому с помощью программы для администрирования следить за целевым использованием внутрисетевого и интернет-трафика. Благотворно на производительности сети скажется использование служебных приложений NortonSystemWorks(таких как дефрагментация, чистка реестра, исправление текущих ошибок с помощью WinDoctor), а так же регулярной антивирусной проверки в ночное время. Также следует разделить во времени загрузку информации из другого сегмента т.е. постараться чтобы каждый сегмент обращался к другому в отведённое ему время. Установка программ, не имеющих отношения к непосредственной области деятельности компании, должна пресекаться администратором. При монтаже сети необходимо маркировать кабель, чтобы не столкнуться с трудностями при обслуживании сети.

Монтаж сети следует осуществлять через существующие каналы и короба.

Для надежной работы сети необходимо наличие сотрудника отвечающего за всю локальную сеть и занимающегося ее оптимизацией и повышением производительности.

Периферийное (принтеры, сканеры, проекторы) оборудование следует устанавливать уже после конкретного распределения обязанностей рабочих станций.

В целях профилактики следует периодически проверять целостность кабелей в секретном полу. При демонтаже оборудования следует аккуратно обращаться с оборудованием, для возможности его последующего использования.

Кроме того, необходимо ограничить доступ в серверную комнату и к тумбам с коммутаторами.

1. В.Г. Олифер, Н.А. Олифер – СПб. Питер 2004

2. http://ru.wikipedia.org/wiki/

3. В.М. Шек, Т.А. Кувашкина «Методические указания для курсового проектирования по дисциплине Сети ЭВМ и телекоммуникаций» - Москва, 2006

4. http://catalog.sunrise.ru/

5. В.М. Шек. Лекции по дисциплине «Сети ЭВМ и телекоммуникации», 2008г.

Локальная сеть в офисе

Пример локальной сети в офисе в схематичном виде

Расположение оборудования в офисе, возможные кабельные сети для офиса. Услуги связи: телефония, интернет, телевидение.

Организация телефонной связи в офисе с организацией ip телефонии для удаленных сотрудников.

Организация телефонной сети компании с использованием сети интернет. Создание телефонной сети с высококачественной телефонной связью. Организация бесплатных телефонных звонков для клиентов.

Схема локальной сети

Особенности локальной сети

Пример локальной сети приведен для более понятного и информативного представления работы сети с приоритезацией передачи различных видов трафика: интернет, телефонный трафик, телевидение.

Схема локальной сети

В современных условиях жесткой конкуренции важно оперативно реагировать на любые изменения. Стабильность работы любой фирмы, кафе, магазина или крупной корпорации напрямую зависит от надежности и продуманной типологии локальной сети.

Ключевые преимущества локальных сетей для бизнеса:

Непрерывный доступ сотрудников к документам, базам данных непосредственно с рабочего места;

Мгновенный обмен отчетами между отделами;

Организация совместного доступа к оргтехнике (принтерам, фаскам, копирам, сканерам);

Организация доступа в интернет со всех рабочих станций;

Возможность автоматизировать рутинные процессы;

Организация бесплатной и защищенной корпоративной связи между отдельными кабинетами, зданиями.

Грамотно спроектированная локально-вычислительная сеть в разы повышает эффективность работы предприятия, позволяет высвободить человеческие ресурсы, предоставляет массу дополнительных возможностей

Почему разработку корпоративной локальной сети стоит доверить компании Canmos?

В небольших офисах, где нужно соединить два-три компьютера, локальная сеть может быть организована собственными силами. Но на большинстве предприятий лучше довериться специализированной компании.

Без опыта, практических навыков и знаний рынка сетевого оборудования возможен серьезный перерасход бюджета без достижения нужного результата. Порой, неправильное соединение или экономия на кабеле и коннекторах приводит к тому, что дорогущая аппаратура работает только на 10-20% своих возможностей. Как результат – постоянный задержки, сбои, горящие порты или вовсе отказ системы.

Без разработки детального плана после завершения работ может получиться, что забыли проложить линию для сетевого принтера, а в маршрутизаторе все порты заняты и нет возможность подключить еще одно устройство. Поскольку заранее не было предусмотрено масштабирование, при расширении офиса «втыкнуть новые» компьютеры банально некуда.

С компанией Canmos все проблемы сети уйдут в прошлое. Мы много лет занимаемся предоставлением услуг связи и проектированием систем передачи данных. При разработке сети мы:

Детально продумаем топологию, чтобы удовлетворить все потребности вашего предприятия по функциональности;

Предусмотрим масштабирование и удобное добавление новых рабочих станций с минимальными капиталовложениями;

Обеспечим защиту от внешних и внутренних угроз;

Гарантируем легкость управления.

Типичная схема локальной сети от Canmos

При проектировании ЛВС предпочтение отдается типологии «Звезда» - каждый узел (компьютеры, сетевые принтеры) подключаются к коммутатору отдельным кабелем. Такое решение обеспечивает:

Независимую работу каждой рабочей станции, что повышает надежность сети;

Минимальную стоимость и простоту добавления в сеть новых устройств при расширении предприятия.

Для повышения надежности и отказоустойчивости, упрощению администрирования, оптимизации нагрузок между сетевым оборудованием локально-вычислительная сеть разбивается на несколько сегментов – подсети соединяются между собой высокоскоростным оптическим каналом. В отдельном сегменте работают серверы почты, файловый и 1С, АТС.

Для упрощения администрирования компьютеры разных отделах, например бухгалтерии, коммерческом или юридическом объединяются в рабочие группы.

Беспроводной доступа к сети обеспечивают точки доступа wi-fi.

Технически, при прокладке LAN-сетей оптимально серверное и сетевое оборудование разместить в отдельном помещении, для обеспечения быстрого доступа из одного места для администратора сети. Возле рабочих мест сотрудников выводятся розетки для RJ-45 и RJ-12 (для IP-те6лефонии).

В дальнейшем, в зависимости от потребностей предприятия, на базе готовой локальной сети может быть развернута офисная IP-телефония (для стабильного соединения предусмотрена приоритезация с выделением скорости 64 кб/с на один аппарат), сеть 1С. Может быть предусмотрено безопасное (шифрованное) подключение к локальной сети удаленных сотрудников по VPN-каналу.

Доброго времени суток.

В этой статье мы разберем, что такое локальная сеть, зачем она нужна, как организовывается и каких типов бывает. Такая сеть может пригодиться и вам, поэтому не проходите мимо.


Определение

Локальной сетью считается та, что объединяет несколько компьютеров на небольшой территории. Данное понятие в переводе на английский выглядит как Local Area Network, поэтому его часто сокращенно называют LAN.

Сеть может располагаться в пределах одной квартиры, офиса, компьютерного класса, небольшой организации или ее отдела. Этим я хочу сказать, что обычно она не включает в себя много компов и они не находятся на большом удалении друг от друга.

Допустим, вы можете организовать домашнюю сеть, если имеете стационарный компьютер, ноутбук, принтер, пару мобильных гаджетов, умный телевизор и т. п. Такой вариант удобен и, к примеру, для предприятия, где есть 10-20 компьютеров, находящихся на разных этажах. Или к примеру /частном доме.

Зачем нужна локальная сеть?

LAN может понадобиться для:

  • Передачи данных между устройствами без участия внешних накопителей (флешек, дисков и пр.);
  • Открытия доступа к интернету для всех участников сети, если он подключен только к одному компьютеру;
  • Управления портативными устройствами с разных компов. Например, в пределах офиса с любого железа можно печатать на одном принтере;
  • Организации голосовых и видеоконференций;
  • Игр по сети.

Типы локальных сетей

Их всего два:

  • Одноранговая сеть. Все участники имеют равные права, то есть самостоятельно решают, к каким файлам открывать доступ, а к каким - нет. Применяется в случаях объединения небольшого количества ПК.
  • На основе сервера. Актуальный вариант, когда компов больше 10. Увеличивает производительность сети. Суть в том, что для хранения общей информации, подключения периферийных девайсов (сканеров, принтеров и пр.), определения маршрутов отправки информации и централизованного управления всей сетью выделяется одна машина - сервер - а все остальные подпитываются к ней.

Также есть два способа построения сети: при помощи проводов или без них. Рассмотрим каждый отдельно.

Проводное соединение

Используется витая пара либо оптический кабель, который подключаются к на ПК. Такие устройства есть в любом железе, которому не больше 10-15 лет, - они интегрируются в материнскую плату.

Проводное объединение обеспечивает наиболее стабильную и быструю передачу данных. В современных вариантах пропускная способность составляет 100 Мбит/с и выше через витую пару. От 10 Гбит/с по оптоволокну. Для такого подключения чаще всего применяется технология Ethernet.

Когда совокупность компьютеров большая или необходимо с одного сервера раздавать интернет, могут быть использованы хабы (коммутаторы). Они имеют несколько разъемов для подключения проводов. В их функции входит ретрансляция входящего в один порт сигнала по другим интерфейсам.

Структура сети

Есть несколько топологий подключения компьютеров по проводам:

  • Линейная шина - последовательное соединение ПК от одного к другому.
  • Тип «звезда» - все участники сети питаются от одного сервера.
  • Кольцо - структура соединения понятна из названия. В данном случае тоже распределяются ресурсы сервера среди всех машин, но если одна выйдет из строя, то другие работать не будут.

  • Снежинка - самая гибкая топология, потому что позволяет соединять оборудование по наиболее удобному принципу, как правило, с учетом его функциональности.

Беспроводной способ

Имеется в виду объединение по радиоволнам. Самый распространенный сейчас вариант - это . Однако возможно подключение также через Bluetooth и GPRS. В любом случае скорость будет ниже, чем при соединении по проводам. В среднем, по вай-фаю она составляет 10 Мбит/с и выше.

Для создания сетки без участия проводов нужно, чтобы в компьютерах был специальный модуль. В современных ноутбуках он обычно встроен, а для ПК можно купить внешнее устройство. Также необходим единый сетевой шлюз (роутер), к которому будет подведен проводной интернет. А участники сети будут получать его по радиоволнам.

Как передаются данные?

Чтобы организовать локальную сеть, мало лишь физически соединить машины, нужно еще выполнить настройку. Их работа контролируется программами. Чтобы компы понимали друг друга, используется единый и понятный для них язык - сетевой протокол.

Он бывает разных видов, но наибольшее распространение получили пакетные протоколы. Что это значит? Передаваемые данные разбиваются на блоки, которые помещаются в пакет. Он также содержит сведения о получателе и адресате. Каждый компьютер с определенной периодичностью коннектится к сети и проверяет проходящие пакеты: те, что предназначены для него, забирает.

Как железо понимает, что тот или иной пакет адресован именно ему? Каждая машина имеет IP-адрес, уникальный в рамках одной сети. Он задается в процессе настройки Windows или другой системы, которую вы используете.

Конец статьи:).

На моём блоге вам всегда рады.

Рассмотрим типичный небольшой офис. Предположим, что в нем работают несколько менеджеров (пусть их будет три), секретарь, бухгалтер и директор. На каждом рабочем месте установлен компьютер, также в офисе есть один выделенный канал в интернет с постоянным реальным ip адресом (например 195.34.10.134) и доменное имя myoffice.ru.

Теперь определимся, что мы хотим сделать.

  • объединить все компьютеры в локальную сеть (LAN);
  • организовать печать со всех рабочих мест на сетевой принтер;
  • подключить и настроить Интернет - канал;
  • организовать доступ в Интернет со всех компьютеров локальной сети.;
  • защитить локальную сеть от внешних вторжений;
  • установить и настроить сетевые сервисы: WEB-сервер, почтовый сервер, файловый, FTP, прокси и т.д.;
  • организовать удаленный модемный доступ к офисной сети из дома с возможностью использования офисного интернет-канала

Теперь приступим к проектированию структуры сети.

Поставленую задачу построения простой локальной сети мы будем решать на базе стека (набора) протоколов TCP/IP.

Сначала выберем диапазон IP адресов для нашей локальной сети. Остановимся на зарезервированных для использования в частных сетях адресах: 192.168.0.0-192.168.255.255. Для нашей локальной сети используем адресацию 192.168.20.0/24, где "/24" - сокращенная форма записи маски подсети 255.255.255.0. В каждой такой сети (класса "С") может использоваться до 254 уникальных хостов, чего нам вполне достаточно. Постоянный ip адрес (195.34.10.134) в сети интернет нам по условию задачи предоставлен провайдером.

В простом случае наша сеть может иметь следующую топологию:

Как видно из рисунка 1, большая часть сетевых сервисов размещена на одном компьютере, который через один сетевой интерфейс подключен к сети интернет, через другой - к локальной сети офиса, а через модемное соединение - к домашнему компьютеру. Каждому сетевому интерфейсу этого компьютера соответствует свой ip адрес: 195.34.10.134 - в сети интернет, 192.168.20.1 - в локальной сети, 192.168.40.1 - при удаленном соединении. Таким образом этот компьютер выполняет роль и маршрутизатора и файерволла и серверов: web, почтового, базы данных и пр. (Маршрутизатор - в нашем случае играет роль шлюза в Интернет. Вы можете спросить: нафиг он нужен, чем занимается? Отвечу как чайник: маршрутзатор занимается маршрутизацией... пакетов между подсетями, но в нашем случае он будет просто "раздавать" Интернет всем компьютерам в нашей локальной сети). Но такая структура имеет недостатки: во-первых, опасно "класть все яйца в одну корзину" (такая сеть весьма уязвима для атак и не очень надежна - проигравший теряет все), во-вторых, в ней не оптимально распределяется нагрузка, а в-третьих, ее неудобно администрировать - любой сбой или неисправность основного сервера практически полностью парализует работу всей локальной сети. Несмотря на недостаки этого варианта, мы в дальнейшем в основном будем использовать именно его, т.к. мы здесь рассматриваем самые простые и дешевые решения для маленьких контор и дома. Следующие две схемы приведены лишь для ознакомления, и в них можно не вникать.

Теперь немного изменим топологию сети, чтобы устранить часть недостатков (см. рис.2).

Здесь маршрутизатор выполняет только роль шлюза в интернет и файерволла, а сетевые сервисы размещены внутри локальной сети, в идеале - каждый на отдельном компьютере. Теперь выход из строя одного сервера не парализует другие. Но в этой сетевой топологии тоже имеется недостаток: рабочие станции и серверы находятся в одном и том же сегменте сети, что потенциально снижает ее надежность и производительность.

Поэтому, может быть, будет лучше интернет-серверы выделить в отдельный сегмент (см. рис.3).

В этом случае локальная сеть находится в одном сегменте сети, а интернет-серверы - в другом.

Могут быть и другие топологии локальной сети, все зависит от конкретных целей и условий, но для упрощения задачи мы остановимся на первой сетевой топологии (Рис.1), несмотря на ее недостатки, т.к. для экспериментов - это не принципиально.

Теперь пришло время подумать на каком оборудовании и программном обеспечении (ПО) следует реализовать нашу простую локальную сеть. Конкретные реализации будут описаны в следующих статьях, здесь же затронем общие вопросы.

Прошло то время, когда руководство компаний могло не задумываться о легальности устанавливаемых программ. Сейчас нарушения в области авторских прав относятся к тяжким преступлениям, поэтому от греха подальше (с целью минимизации рисков) будем рассматривать только лицензионное программное обеспечение. Оптимизация затрат при переходе на лицензионные программы для маленьких организаций будут рассмотренны в отдельной статье 146УК (шутка:)))).

В качестве шлюза в Интернет можно использовать:

  • компьютер с Windows (дорогое решение);
  • компьютер с FreeBSD/Linux;
  • аппаратный роутер (самое простое и дешевое решение - от 50$).

От некоторых крутых гуру, работающих в крупных организациях, скорее всего услышите рекомендацию на сервер поставить MS Windows 2003 Server, на него поставить ISA (для организации Интернет доступа), почтовый сервер MS Exchange, на клиентские компьютеры поставить Windows XP Pro и завести их в домен, а 1С использовать в терминальном режиме.

В принципе это функционально оптимальный вариант... для крупных организаций, но мы то не монстры, мы - маленькая конторка на 3-10 ПК. Посчитайте по прайс-листу партнеров Microsoft во сколько тысяч (десятков тысяч) долларов вам обойдется такое решение. Поэтому в следующих статьях будут рассматриваться в основном дешевые варианты, где на сервере (шлюзе) будут использоваться бесплатные FreeBSD или Linux, а на клиентских машинах Windows XP HomeEdition (или Professional)... а то и Linux Ubuntu.

Понравилось? Лайкни нас на Facebook