Как сделать аккумулятор для радиоуправляемых автомобилей. Простой бюджетный вариант переделки питания ру игрушек на литий. Соединение элементов аккумуляторов

Всех приветствую, кто заглянул на огонек. Речь в обзоре пойдет, как вы наверно уже догадались, о грамотной переделке питания радиоуправляемой машины с никеля на литий с учетом всех предыдущих костылей. Данный способ достаточно простой и достаточно бюджетный, поэтому кому интересно, милости прошу под кат…
Upd, добавлено несколько вариантов защиты электроники РУ модельки

Предыдущий вариант пределки aka предыстория:

Несколько месяцев назад я выкладывал небольшой о переделке РУ модельки (ментовская машинка) на основе повышающего преобразователя MT3608, платы зарядки TP4056 со встроенной защитой и одного Li-Ion аккумулятора. Суть была проста: с аккумулятора с помощью преобразователя MT3608 поднималось напряжение до необходимого уровня, а «народная» платка TP4056 позволяла зарядить аккумулятор от любого источника с USB выходом. Схема соединений была очень простая:


В спаянном виде и с фиксацией термоклеем выглядело это следующим образом:


Зарядка машинки была простой и удобной:


Но в процессе эксплуатации выявились некоторые недочеты, а именно, при потреблении тока РУ моделькой более 1,5А отрабатывала защита и кратковременно пропадало питание. Это касалось, в основном, серьезных РУ моделек с более-менее мощными двигателями. В моем варианте, машинка в максимуме потребляла около 0,9А и сбоев в работе не было. Но при значительном снижении напряжения аккумулятора, у меня наблюдалась именно такая же ситуация – в пике нагрузки машинка дергалась. Поскольку машинкой пользовались нечасто, емкость встроенного АКБ была приличная, да и было банально лень заниматься этой темой, то все было оставлено как есть. При первых симптомах «дерганья», машинка просто ставилась на зарядку. Совсем недавно появилось свободное время и был придуман другой способ переделки. По затратам он чуть накладнее предыдущего, зато имеет некоторые преимущества, о которых будет рассказано ниже.


Для начала напомню о преимуществах литиевых источников питания (Li-Ion/Li-Pol) над никелевыми (NiCd). В нашем случае сравнение только с NiCd, ибо только они могут отдавать высокий ток. Для примера сравним родную батарею машинки и вариант после переделки:
- высокая плотность энергии. В машинке стоит одна кадмиевая батарея 5S 6V 700mah запасенная энергия 6*0,7=4,2Wh, а в варианте после переделки будут два литиевых аккумулятора 18650 3,7V 3350mah, соединенных последовательно. Запасенная энергия будет равняться соответственно 7,4*3,35=24,8Wh. Как мы видим, запасенная энергия в несколько раз выше, что позволяет работать машинке значительно дольше. Если сравнить лицом к лицу один NiCd и один Li-Ion/Li-Pol аккумулятор, то разница просто огромная
- отсутствие эффекта памяти, т.е. можно заряжать их в любой момент, не дожидаясь полного разряда
- меньшие габариты при одинаковых параметрах с NiCd (в сравнении со сборкой никеля)
- быстрое время заряда (не боятся больших токов заряда) и понятная индикация
- низкий саморазряд
Из минусов Li-Ion можно отметить только:
- низкая морозостойкость аккумуляторов (боятся отрицательных температур)
- требуется балансировка банок при заряде (в случае 2S и более) и наличие защиты от переразряда

Как видим, преимущества лития налицо, особенно для применения в домашних условиях, поэтому смысл переделки есть.

Коротко о переделываемой РУ модели:

Итак, дубль два

Я не стал наступать на те же грабли, поэтому сразу определился на схеме из двух последовательно соединенных Li-Ion аккумуляторов с применением платы защиты 2S BMS. Основными минусами данной схемы является неравномерный разряд аккумуляторов в зависимости от их состояния и малая распространенность зарядных устройств под такое соединение, а также возможное повреждение электроники РУ модели от завышенного питающего напряжения. Плата BMS здесь обязательна, т.к. защищает аккумуляторы от переразряда, поэтому рекомендую не пренебрегать ей. А вот ситуация с зарядом на сей день, несколько улучшилась. Существует два простых бюджетных способа заряда литиевой 2S батареи:
1) Дикий колхоз в виде двух платок заряда TP4056 на каждый аккумулятор и два сетевых адаптера/БП для их зарядки. Если в хозяйстве имеются два более-менее нормальных адаптера с выходом 0,5-1А, то вариант вполне пригодный. Нужно будет немного потратиться на платки TP4056, но опять же, заряжать будет не очень удобно. Если в наличие нет сетевых адаптеров/БП, то как говорится, шкурка выделки не стоит и лучше отказаться от данного метода
2) Используем специализированные ЗУ для 2S-3S сборок. На площадках их сейчас предостаточно, стоят в районе $5. При этом в дальнейшем могут пригодиться, например, для одновременной зарядки различных Li-Ion/Li-Pol аккумуляторов, для переделки электроинструмента и т.д.

Необходимые компоненты для доработки:

Как можно заметить, каких-либо дорогих компонентов не требуется:


Главным мозгом системы является 2S BMS плата защиты XWS8232FR4, стоимостью около одного доллара:


Не трудно догадаться, что выполнена она на основе того же контроллера Seiko S8232U и силового мосфета:


Самым дорогим из всех компонентов является ЗУ 2S-3S ImaxRC B3, который стоит около 5 долларов:


Он представляет собой копию известного зарядника SkyRC e3, но с более скромными зарядными характеристиками:


У меня есть оригинал и еще один вариант, но на 4S, о которых я расскажу и сравню лицом к лицу в будущих статьях. К слову, данных копий достаточно много, по крайней мере, я видел 3 штучки, но на мой взгляд, схемотехника там похожая.
Следующим немаловажным звеном являются аккумуляторы. Я применил Li-Ion аккумуляторы Panasonic NCR18650BF из ПБ Xiaomi 10000mah, емкостью 3350mah каждый:


В данной реализации желательно применять современные высокоемкие банки, имеющие заниженный порог разряда в 2,5V. Моделей достаточно много (высокоемкие банки Sanyo/Panasonic/Samsung/LG), все что выше 2800mah обычно идет именно с порогом разряда в 2,5V. Народные Sanyo/Samsung 2600mah не очень подходят к данной платке, т.к. имеют несколько «завышенный» порог разряда в районе 2,75V. Небольшая трудность – подпайка питающих проводов к контактам аккумуляторов. Если заморачиваться с пайкой нет желания, то можно приделать одно/двухслотовый холдер/держатель под ф/ф 18650, например .
Для зарядки будущей РУ модельки понадобятся по одному разъему USB (папа и мама), а также 3-х контактный разъемчик для подключения к заряднику. Он часто встречается в процессорных кулерах. У меня в загашнике нашлись эти компоненты, USB «папа» откусил он наихудшего витого зарядного кабеля:


Все эти компоненты стоят копейки и возможно найдутся в чулане.

Тестирование платки:

Пара слов о платке защиты. Подключение очень простое, единственная трудность заключается в том, что ее размеры небольшие, поэтому припаивать провода нужно аккуратно. Схема подключения следующая:


Коротко поясню: зеленым цветом обозначены соединения, отвечающие за работу платы, а синим – места подключения к зарядному устройству. Желательно выходы от ЗУ подпаивать именно к контактам аккумулятора, во избежание дополнительных потерь, но в случае невозможности это сделать, сойдет и вариант подключения к плате защиты.
Данная платка является самой простой, поэтому если требуется аналог, то ищите на интернет-площадках по наименованию «2S bms» или «2S Li-ion Lithium Battery Protection Board»:


Самым важным для меня в платке был порог отключения АКБ. Для этого я сварганил небольшой стенд. Здесь в качестве одного АКБ выступает БП Gophert CPS-3010, на который я недавно делал и обычный Li-Ion аккумулятор. Меняя напряжение на регулируемом блоке питания, можно узнать точный порог срабатывания платки. Напряжение второго АКБ 3,8V:


Если установить на БП выходное напряжение 4,2V, то на выходе получим 8V (4,2V + 3,8V), что можно увидеть на левом скрине. Мультиметр здесь замеряет напряжение на выходе с платы 2S BMS. Если выставить на БП 3,8V, то на выходе получим 7,6V (правый скрин):


Все работает в штатном режиме. Теперь смотрим порог срабатывания защиты. При установке 2,41V платка продолжает работать и на выходе суммарное напряжение с обоих банок (левый скрин), но как-только снижаем до 2,4V – срабатывает защита и платка отключает выходное напряжение (правый скрин):


Итого, порог срабатывания защиты по любому из двух аккумуляторов – 2,4V. Вот почему я писал, что «народные» аккумуляторы на 2600mah здесь не очень подходят. Присутствует блокировка, т.е. платка не «восстанавливается» сама. Ток защиты, к сожалению, не измерял, но он должен быть в районе 3А.

Непосредственная сборка:

Когда все необходимые компоненты в наличии, можно приступать. Первым делом собираем 2S сборку Li-Ion аккумуляторов. Это вариант для тех, кому не подходит вариант с держателями под 18650 банки, например, из-за габаритов. Для этого наклеиваем по две полоски изоленты на каждый АКБ. Это нужно для подстраховки от защиты КЗ, поскольку термоусадка аккумуляторов достаточно тонкая и может повредиться. Учитывая тот факт, что РУ модели обычно подвержены ударам, тряске и т.д. – лишней перестраховка не будет. После этого соединяем аккумуляторы полосками друг к другу и обматываем слоем изоленты (можно использовать другие изоляторы):


Далее можно приступить к пайке контактов. Я уже неоднократно описывал как это делать, поэтому повторяться не буду (будет подробное видео в обзоре переделки шуруповерта). Особого вреда пайка не приносит, главное долго не держать жало паяльника, ну и пользоваться активным флюсом, например паяльной или ортофосфорной кислотой. После нее не забываем протереть место пайки спиртиком!
Далее берем провод, по желанию зачищаем как на фото слева (можно и двумя проводами сделать) и спаиваем воедино соединение аккумуляторов и вход платки. Должно примерно получиться вот так:


Я не буду здесь подробно останавливаться, поскольку вариантов может быть много. Мне ближе вариант, когда аккумуляторы и платка защиты вместе, поскольку потери в проводах минимальны. Далее подпаиваем оставшиеся проводки согласно все той же схеме (см. выше):


На этом сборка 2S батареи завершена, но ведь ее еще нужно как-то заряжать. Для этого воспользуемся готовым недорогим зарядником, представляющим из себя аналог трех линейных зарядных контроллеров с независимым питанием на каждое плечо. Поскольку зарядник может заряжать сборки как 2S, так и 3S (оптимально для шурика), то он может пригодиться в дальнейшем не только для зарядки РУ моделек. Для заряда 2S сборки, нам нужен левый разъем:


В подтверждение замеры полярности:


На холостом ходу напряжение немного прыгает, но при зарядке АКБ, ограничение точно 4,2V на банку.
Для удобного подключения к заряднику, я спаял переходник из разъема USB «папа» и трехконтактного разъема, место пайки заизолировал термоусадкой:


Поскольку проводки хилые, то для повышения механической прочности обмотал все изолентой:


Разъем USB «мама» предназначен для РУ модели. Для этого проделываем соответствующее отверстие и вставляем USB разъем до упора (на конце разъем имеет упоры):


Для более надежной фиксации припаиваем три провода достаточной длины и фискируем термоклеем:


Далее один из важных этапов – соединение получившейся 2S сборки АКБ с контактами зарядника согласно схеме из раздела «Тестирование платки». Здесь следуем пословице - семь раз отмерь, один раз отрежь. Сверяем распиновку всех разъемов и припаиваем провода. Я не буду путать вас своими «соплями», ибо у всех они будут отличаться. Еще раз все проверяем и подключаем. Если все хорошо, укладываем все хозяйство и собираем РУ модельку. Сам аккумулятор оставляем в батарейном отсеке. Для предотвращения бултыхания аккумулятора кладем рядом пупырку или изолон. У меня получилось вот так:


Открываем дверцу машинки и подключаем зарядник. Если АКБ разряжены, то ЗУ начинает заряд, индикаторы при этом красного цвета. Если присутствует разбалансировка и какая-то из двух банок зарядится быстрее, ее заряд прекращается и индикатор меняется на зеленый (правый скрин):


Как только будут заряжены оба аккумулятора, все индикаторы будут зелеными:


По опыту эксплуатации могу сказать следующее, что данная бюджетная зарядка неплоха, ток заряда на плечо около 900ma (при 2S), плюс есть возможность заряжать как 2S, так и 3S сборки. Более подробные характеристики и сравнения с другими моделями, смотрите в будущих обзорах.
Реализация зарядки машинки получилась такая же, как и в прошлом варианте. Для зарядки сдвигаем дверь и подключаем, ничего разбирать не нужно:


Теперь о потребляемых токах.

В ждущем режиме плата машинки кушает 56ma:


Обычная езда – в районе 300ma:


Максимальный ток потребления – около 900ma:


Запускаем – все летает. Данный вариант нисколько не сложнее предыдущего, зато характеристики РУ модельки вырастут. Единственная опасность – сможет ли электроника игрушки переварить 8,4V.
На этом у меня все…

Дополнение 1:

Поскольку не все РУ модельки рассчитаны на высокое напряжение питания, то по желанию можно снизить напряжение отличным понижающим DC-DC преобразователем :


Единственное замечание – подстроечный резистор после регулировки необходимо зафиксировать лаком или клеем. Данный преобразователь имеет компактные размеры, высокий КПД и приличный рабочий ток около 3А. На площадках можно также найти другие варианты преобразователей. Гуглим по «DC-DC step down».

Второй вариант, как правильно заметили в комментариях, заключается в ограничении рабочего тока простым токоограничивающим резистором. Это необходимо для защиты двигателей от чрезмерного тока. Поскольку у меня вроде работает отлично, то я ничего переделывать не стал. Для тех, кому это необходимо, предлагаю небольшой расчет резистора для моего варианта. Для этого необходимо определиться с номиналами:
- U (пит) – напряжение питания со сборки. В нашем случае пусть будет 8V (два аккумулятора)
- U (электр) – напряжение питания электроники машинки (РУ модели). В нашем случае стандартное было 6V (5 последовательных NiCd АКБ)
- U (гасящ) – разница между «новым» питанием и «стандартным» до переделки
- I (раб) – ограничительный ток, т.е. максимальный для машинки. В моем варианте в максимуме машинка кушает 0,9А. Для защиты движков можно установить, предположим, 0,5А
- R (гасящ) – сопротивление токоограничивающего резистора (см. расчет)
- P (гасящ) – мощность резистора (см. расчет)

Итак, рассчитываем все согласно закону Ома: I = U / R
U (гасящ) = U (пит) - U (электр) = 8 – 6 = 2V
R (гасящ) = U (гасящ) / I (раб) = 2 / 0,5 = 4 Ohm
P (гасящ) = I (раб) * I (раб) * R (гасящ) = 0,5 * 0,5 * 4 = 1 W

Исходя из расчетов, нам нужен резистор на 4 Ohm и мощностью не менее 1 W. Лучше взять с запасом на 5 W, чтобы не перегревался:

Радиоуправляемые модели (автомобилей, судов, летательных аппаратов или военной техники) нуждаются в источнике электроэнергии – аккумуляторной батарее. Если ваша модель оснащена электродвигателем, вам потребуется силовая батарея, если же ваша модель движется с помощью ДВС, вам все равно потребуется батарея для обеспечения работы радиоприемника, сервомашинок, гироскопа или другой электроники.


Для радиоуправляемых моделей используют никель-кадмиевые батареи (NiCd), никель-металлгидридные (NiMh), литий-полимерные (LiPo), литий-железо-фосфатные (LiFePO4).

Основные характеристики аккумуляторов:

1.Емкость - измеряется в миллиампер-часах, (мАч). Емкость бортовых батарей для аппаратуры и сервомашинок может колебаться от 200-300 мАч до 2000 мАч. Силовые батареи для электромоторов могут иметь емкость свыше 5000 мАч.



2.Напряжение элементов – оно зависит от типа аккумуляторной батареи, для NiCd и NiMh оно составляет 1.2 В. LiPo элементы имеют напряжение 3.6 В.

3.Напряжение батареи – суммарное напряжение элементов (элементы в батареи соединяются последовательно). Существует линейная зависимость? Чем выше выходное напряжение батареи, тем выше максимальное значение тока, который батарея может отдавать.

4.Масса батареи – зависит от типа аккумулятора и его емкости. Один из важнейших показателей батарей – это отношение емкости к массе (удельная емкость). Чем выше этот показатель, тем значительнее запас энергии аккумулятора.

5.Токоотдача – способность аккумуляторной батареи отдавать определенный ток под нагрузкой. Это значение имеет обозначение типа «*С», где * - числовое значение, перемножив которое на емкость батареи получим ток, который батарея может отдавать. Силовые аккумуляторы для радиоуправляемых моделей могут иметь токоотдачу 10С и более.



6.Внутреннее сопротивление – его значение определяет токоотдачу аккумулятора. Чем меньше его значение, тем выше токоотдача.

Никель-кадмиевые аккумуляторы

Эти аккумуляторы довольно часто ставят на радиоуправляемые модели в качестве силовых (ходовых). Элементы аккумуляторов NiCd имеют цилиндрическую форму, за что их прозвали «банками». Никель-кадмиевые аккумуляторы стоят не дешево, однако они и «отрабатывают» свою стоимость: такие батареи способны длительное время отдавать значительные токи, имеют длительный срок эксплуатации, значительное рабочие число циклов (заряд-разряд).

Металл-гидридные аккумуляторы

Аккумуляторы NiMh имеют сходные с никель-кадмиевыми батареями форму и характеристики, но обладают более «эластичными» показателями и более низкой стоимостью. Силовые NiMh батареи могут прослужить от 500 до 1000 циклов заряда-разряда и от трех до пяти лет. У таких батарей так называемый «эффект памяти» проявляется в меньшей степени, нежели у батарей NiCd.

Литий-полимерные батареи

Аккумуляторы LiPo – это довольно «свежая» разработка в сфере источников питания. Внешне – это пластины прямоугольной формы с номинальным напряжением каждого элемента в 3.6 В (при полной зарядке – 4.2 В).


Их емкость может быть весьма высока (показатель удельной емкостью почти втрое большей, чем у батарей NiMh). LiPo-батареи более эффективны, их с успехом используют в моделизме. Такие аккумуляторы требуют к себе аккуратного и осторожного обращения.

Литий-железо-фосфатные аккумуляторы

Это самый «молодой» тип аккумуляторных батарей, используемый в моделизме. Такие батареи обладают емкостью, сравнимой с аккумуляторами LiPo, в то же время являясь неприхотливыми и надежными аккумуляторами, как NiCd. Стоимость таких батарей высока и в моделизме их используют не массово.

Выбирая аккумулятор для радиоуправляемой модели следует учитывать ее емкость (емкости должно хватать на обеспечение полноценной работы модели на протяжении определенного времени), вольтаж, габариты, возможность зарядки уже имеющимся З/У. Немаловажна и форма аккумуляторной батареи: она должна подходить для вашей модели. Форму определяет компоновка элементов аккумулятора.

Зарядка аккумуляторных батарей

Аккумуляторные батареи для радиоуправляемых моделей необходимо заряжать. Для этого существуют различные зарядные устройства: от простейших, рассчитанных на «свой» тип и емкость батареи, до универсальных зарядок, работающих со всеми типами батарей и обеспечивающими любые режимы заряда, разряда, балансирующими каждый элемент аккумуляторов.

Простые зарядные устройства стоят не дорого, но и «качество» обеспечиваемого ими заряда не самое высокое.



Говоря проще – это зарядки «фиксированные», для батарей определенного типа и емкости. Такие зарядные устройства не подстраиваются под изменяющие характеристики бывших в эксплуатации аккумуляторов и их не рекомендуется использовать для батарей различных типов, различной емкости. А наращивать количество зарядок, имея для каждого аккумулятора свое З/У – не самый удачный ход. Поэтому моделисты рано или поздно приходят к необходимости приобретения качественной многофункциональной зарядки, например
или . Конечно, такое З/У стоит значительных средств, но это разумное и даже необходимое капиталовложение.


Главное, что следует уяснить моделисту: каждая аккумуляторная батарея служит дольше и продуктивнее, если ей обеспечивать полные циклы заряда и разряда.

Всех приветствую, кто заглянул на огонек. Речь в обзоре пойдет, как вы наверно уже догадались, о грамотной переделке питания радиоуправляемой машины с никеля на литий с учетом всех предыдущих костылей. Данный способ достаточно простой и достаточно бюджетный, поэтому кому интересно, милости прошу под кат…
Upd, добавлено несколько вариантов защиты электроники РУ модельки

Предыдущий вариант пределки aka предыстория:

Несколько месяцев назад я выкладывал небольшой о переделке РУ модельки (ментовская машинка) на основе повышающего преобразователя MT3608, платы зарядки TP4056 со встроенной защитой и одного Li-Ion аккумулятора. Суть была проста: с аккумулятора с помощью преобразователя MT3608 поднималось напряжение до необходимого уровня, а «народная» платка TP4056 позволяла зарядить аккумулятор от любого источника с USB выходом. Схема соединений была очень простая:


В спаянном виде и с фиксацией термоклеем выглядело это следующим образом:


Зарядка машинки была простой и удобной:


Но в процессе эксплуатации выявились некоторые недочеты, а именно, при потреблении тока РУ моделькой более 1,5А отрабатывала защита и кратковременно пропадало питание. Это касалось, в основном, серьезных РУ моделек с более-менее мощными двигателями. В моем варианте, машинка в максимуме потребляла около 0,9А и сбоев в работе не было. Но при значительном снижении напряжения аккумулятора, у меня наблюдалась именно такая же ситуация – в пике нагрузки машинка дергалась. Поскольку машинкой пользовались нечасто, емкость встроенного АКБ была приличная, да и было банально лень заниматься этой темой, то все было оставлено как есть. При первых симптомах «дерганья», машинка просто ставилась на зарядку. Совсем недавно появилось свободное время и был придуман другой способ переделки. По затратам он чуть накладнее предыдущего, зато имеет некоторые преимущества, о которых будет рассказано ниже.


Для начала напомню о преимуществах литиевых источников питания (Li-Ion/Li-Pol) над никелевыми (NiCd). В нашем случае сравнение только с NiCd, ибо только они могут отдавать высокий ток. Для примера сравним родную батарею машинки и вариант после переделки:
- высокая плотность энергии. В машинке стоит одна кадмиевая батарея 5S 6V 700mah запасенная энергия 6*0,7=4,2Wh, а в варианте после переделки будут два литиевых аккумулятора 18650 3,7V 3350mah, соединенных последовательно. Запасенная энергия будет равняться соответственно 7,4*3,35=24,8Wh. Как мы видим, запасенная энергия в несколько раз выше, что позволяет работать машинке значительно дольше. Если сравнить лицом к лицу один NiCd и один Li-Ion/Li-Pol аккумулятор, то разница просто огромная
- отсутствие эффекта памяти, т.е. можно заряжать их в любой момент, не дожидаясь полного разряда
- меньшие габариты при одинаковых параметрах с NiCd (в сравнении со сборкой никеля)
- быстрое время заряда (не боятся больших токов заряда) и понятная индикация
- низкий саморазряд
Из минусов Li-Ion можно отметить только:
- низкая морозостойкость аккумуляторов (боятся отрицательных температур)
- требуется балансировка банок при заряде (в случае 2S и более) и наличие защиты от переразряда

Как видим, преимущества лития налицо, особенно для применения в домашних условиях, поэтому смысл переделки есть.

Коротко о переделываемой РУ модели:

Итак, дубль два

Я не стал наступать на те же грабли, поэтому сразу определился на схеме из двух последовательно соединенных Li-Ion аккумуляторов с применением платы защиты 2S BMS. Основными минусами данной схемы является неравномерный разряд аккумуляторов в зависимости от их состояния и малая распространенность зарядных устройств под такое соединение, а также возможное повреждение электроники РУ модели от завышенного питающего напряжения. Плата BMS здесь обязательна, т.к. защищает аккумуляторы от переразряда, поэтому рекомендую не пренебрегать ей. А вот ситуация с зарядом на сей день, несколько улучшилась. Существует два простых бюджетных способа заряда литиевой 2S батареи:
1) Дикий колхоз в виде двух платок заряда TP4056 на каждый аккумулятор и два сетевых адаптера/БП для их зарядки. Если в хозяйстве имеются два более-менее нормальных адаптера с выходом 0,5-1А, то вариант вполне пригодный. Нужно будет немного потратиться на платки TP4056, но опять же, заряжать будет не очень удобно. Если в наличие нет сетевых адаптеров/БП, то как говорится, шкурка выделки не стоит и лучше отказаться от данного метода
2) Используем специализированные ЗУ для 2S-3S сборок. На площадках их сейчас предостаточно, стоят в районе $5. При этом в дальнейшем могут пригодиться, например, для одновременной зарядки различных Li-Ion/Li-Pol аккумуляторов, для переделки электроинструмента и т.д.

Необходимые компоненты для доработки:

Как можно заметить, каких-либо дорогих компонентов не требуется:


Главным мозгом системы является 2S BMS плата защиты XWS8232FR4, стоимостью около одного доллара:


Не трудно догадаться, что выполнена она на основе того же контроллера Seiko S8232U и силового мосфета:


Самым дорогим из всех компонентов является ЗУ 2S-3S ImaxRC B3, который стоит около 5 долларов:


Он представляет собой копию известного зарядника SkyRC e3, но с более скромными зарядными характеристиками:


У меня есть оригинал и еще один вариант, но на 4S, о которых я расскажу и сравню лицом к лицу в будущих статьях. К слову, данных копий достаточно много, по крайней мере, я видел 3 штучки, но на мой взгляд, схемотехника там похожая.
Следующим немаловажным звеном являются аккумуляторы. Я применил Li-Ion аккумуляторы Panasonic NCR18650BF из ПБ Xiaomi 10000mah, емкостью 3350mah каждый:


В данной реализации желательно применять современные высокоемкие банки, имеющие заниженный порог разряда в 2,5V. Моделей достаточно много (высокоемкие банки Sanyo/Panasonic/Samsung/LG), все что выше 2800mah обычно идет именно с порогом разряда в 2,5V. Народные Sanyo/Samsung 2600mah не очень подходят к данной платке, т.к. имеют несколько «завышенный» порог разряда в районе 2,75V. Небольшая трудность – подпайка питающих проводов к контактам аккумуляторов. Если заморачиваться с пайкой нет желания, то можно приделать одно/двухслотовый холдер/держатель под ф/ф 18650, например .
Для зарядки будущей РУ модельки понадобятся по одному разъему USB (папа и мама), а также 3-х контактный разъемчик для подключения к заряднику. Он часто встречается в процессорных кулерах. У меня в загашнике нашлись эти компоненты, USB «папа» откусил он наихудшего витого зарядного кабеля:


Все эти компоненты стоят копейки и возможно найдутся в чулане.

Тестирование платки:

Пара слов о платке защиты. Подключение очень простое, единственная трудность заключается в том, что ее размеры небольшие, поэтому припаивать провода нужно аккуратно. Схема подключения следующая:


Коротко поясню: зеленым цветом обозначены соединения, отвечающие за работу платы, а синим – места подключения к зарядному устройству. Желательно выходы от ЗУ подпаивать именно к контактам аккумулятора, во избежание дополнительных потерь, но в случае невозможности это сделать, сойдет и вариант подключения к плате защиты.
Данная платка является самой простой, поэтому если требуется аналог, то ищите на интернет-площадках по наименованию «2S bms» или «2S Li-ion Lithium Battery Protection Board»:


Самым важным для меня в платке был порог отключения АКБ. Для этого я сварганил небольшой стенд. Здесь в качестве одного АКБ выступает БП Gophert CPS-3010, на который я недавно делал и обычный Li-Ion аккумулятор. Меняя напряжение на регулируемом блоке питания, можно узнать точный порог срабатывания платки. Напряжение второго АКБ 3,8V:


Если установить на БП выходное напряжение 4,2V, то на выходе получим 8V (4,2V + 3,8V), что можно увидеть на левом скрине. Мультиметр здесь замеряет напряжение на выходе с платы 2S BMS. Если выставить на БП 3,8V, то на выходе получим 7,6V (правый скрин):


Все работает в штатном режиме. Теперь смотрим порог срабатывания защиты. При установке 2,41V платка продолжает работать и на выходе суммарное напряжение с обоих банок (левый скрин), но как-только снижаем до 2,4V – срабатывает защита и платка отключает выходное напряжение (правый скрин):


Итого, порог срабатывания защиты по любому из двух аккумуляторов – 2,4V. Вот почему я писал, что «народные» аккумуляторы на 2600mah здесь не очень подходят. Присутствует блокировка, т.е. платка не «восстанавливается» сама. Ток защиты, к сожалению, не измерял, но он должен быть в районе 3А.

Непосредственная сборка:

Когда все необходимые компоненты в наличии, можно приступать. Первым делом собираем 2S сборку Li-Ion аккумуляторов. Это вариант для тех, кому не подходит вариант с держателями под 18650 банки, например, из-за габаритов. Для этого наклеиваем по две полоски изоленты на каждый АКБ. Это нужно для подстраховки от защиты КЗ, поскольку термоусадка аккумуляторов достаточно тонкая и может повредиться. Учитывая тот факт, что РУ модели обычно подвержены ударам, тряске и т.д. – лишней перестраховка не будет. После этого соединяем аккумуляторы полосками друг к другу и обматываем слоем изоленты (можно использовать другие изоляторы):


Далее можно приступить к пайке контактов. Я уже неоднократно описывал как это делать, поэтому повторяться не буду (будет подробное видео в обзоре переделки шуруповерта). Особого вреда пайка не приносит, главное долго не держать жало паяльника, ну и пользоваться активным флюсом, например паяльной или ортофосфорной кислотой. После нее не забываем протереть место пайки спиртиком!
Далее берем провод, по желанию зачищаем как на фото слева (можно и двумя проводами сделать) и спаиваем воедино соединение аккумуляторов и вход платки. Должно примерно получиться вот так:


Я не буду здесь подробно останавливаться, поскольку вариантов может быть много. Мне ближе вариант, когда аккумуляторы и платка защиты вместе, поскольку потери в проводах минимальны. Далее подпаиваем оставшиеся проводки согласно все той же схеме (см. выше):


На этом сборка 2S батареи завершена, но ведь ее еще нужно как-то заряжать. Для этого воспользуемся готовым недорогим зарядником, представляющим из себя аналог трех линейных зарядных контроллеров с независимым питанием на каждое плечо. Поскольку зарядник может заряжать сборки как 2S, так и 3S (оптимально для шурика), то он может пригодиться в дальнейшем не только для зарядки РУ моделек. Для заряда 2S сборки, нам нужен левый разъем:


В подтверждение замеры полярности:


На холостом ходу напряжение немного прыгает, но при зарядке АКБ, ограничение точно 4,2V на банку.
Для удобного подключения к заряднику, я спаял переходник из разъема USB «папа» и трехконтактного разъема, место пайки заизолировал термоусадкой:


Поскольку проводки хилые, то для повышения механической прочности обмотал все изолентой:


Разъем USB «мама» предназначен для РУ модели. Для этого проделываем соответствующее отверстие и вставляем USB разъем до упора (на конце разъем имеет упоры):


Для более надежной фиксации припаиваем три провода достаточной длины и фискируем термоклеем:


Далее один из важных этапов – соединение получившейся 2S сборки АКБ с контактами зарядника согласно схеме из раздела «Тестирование платки». Здесь следуем пословице - семь раз отмерь, один раз отрежь. Сверяем распиновку всех разъемов и припаиваем провода. Я не буду путать вас своими «соплями», ибо у всех они будут отличаться. Еще раз все проверяем и подключаем. Если все хорошо, укладываем все хозяйство и собираем РУ модельку. Сам аккумулятор оставляем в батарейном отсеке. Для предотвращения бултыхания аккумулятора кладем рядом пупырку или изолон. У меня получилось вот так:


Открываем дверцу машинки и подключаем зарядник. Если АКБ разряжены, то ЗУ начинает заряд, индикаторы при этом красного цвета. Если присутствует разбалансировка и какая-то из двух банок зарядится быстрее, ее заряд прекращается и индикатор меняется на зеленый (правый скрин):


Как только будут заряжены оба аккумулятора, все индикаторы будут зелеными:


По опыту эксплуатации могу сказать следующее, что данная бюджетная зарядка неплоха, ток заряда на плечо около 900ma (при 2S), плюс есть возможность заряжать как 2S, так и 3S сборки. Более подробные характеристики и сравнения с другими моделями, смотрите в будущих обзорах.
Реализация зарядки машинки получилась такая же, как и в прошлом варианте. Для зарядки сдвигаем дверь и подключаем, ничего разбирать не нужно:


Теперь о потребляемых токах.

В ждущем режиме плата машинки кушает 56ma:


Обычная езда – в районе 300ma:


Максимальный ток потребления – около 900ma:


Запускаем – все летает. Данный вариант нисколько не сложнее предыдущего, зато характеристики РУ модельки вырастут. Единственная опасность – сможет ли электроника игрушки переварить 8,4V.
На этом у меня все…

Дополнение 1:

Поскольку не все РУ модельки рассчитаны на высокое напряжение питания, то по желанию можно снизить напряжение отличным понижающим DC-DC преобразователем :


Единственное замечание – подстроечный резистор после регулировки необходимо зафиксировать лаком или клеем. Данный преобразователь имеет компактные размеры, высокий КПД и приличный рабочий ток около 3А. На площадках можно также найти другие варианты преобразователей. Гуглим по «DC-DC step down».

Второй вариант, как правильно заметили в комментариях, заключается в ограничении рабочего тока простым токоограничивающим резистором. Это необходимо для защиты двигателей от чрезмерного тока. Поскольку у меня вроде работает отлично, то я ничего переделывать не стал. Для тех, кому это необходимо, предлагаю небольшой расчет резистора для моего варианта. Для этого необходимо определиться с номиналами:
- U (пит) – напряжение питания со сборки. В нашем случае пусть будет 8V (два аккумулятора)
- U (электр) – напряжение питания электроники машинки (РУ модели). В нашем случае стандартное было 6V (5 последовательных NiCd АКБ)
- U (гасящ) – разница между «новым» питанием и «стандартным» до переделки
- I (раб) – ограничительный ток, т.е. максимальный для машинки. В моем варианте в максимуме машинка кушает 0,9А. Для защиты движков можно установить, предположим, 0,5А
- R (гасящ) – сопротивление токоограничивающего резистора (см. расчет)
- P (гасящ) – мощность резистора (см. расчет)

Итак, рассчитываем все согласно закону Ома: I = U / R
U (гасящ) = U (пит) - U (электр) = 8 – 6 = 2V
R (гасящ) = U (гасящ) / I (раб) = 2 / 0,5 = 4 Ohm
P (гасящ) = I (раб) * I (раб) * R (гасящ) = 0,5 * 0,5 * 4 = 1 W

Исходя из расчетов, нам нужен резистор на 4 Ohm и мощностью не менее 1 W. Лучше взять с запасом на 5 W, чтобы не перегревался:


Планирую купить +139 Добавить в избранное Обзор понравился +142 +259

Моделизме, а сейчас расскажем о том, как по-максимуму выжать АКБ, да так чтобы ей продлить жизнь, а себе – удовольствие от классных полетов или увлекательных покатушек.

Для зарядки аккумуляторов любого типа (наиболее часто встречающиеся – Ni Cd (никель-кадмиевые), Ni MH(никель-металл-гидридные), Li Ion (литий-ионные) Li Po или Li pol или Li polymer (литий-полимерные) и Li FePO 4 или Li Fe или Li Fo (литий-железо-фосфатные) вам потребуется зарядное устройство.

Простота или универсальность?

Простейшие устройства для зарядки моделей на радиоуправлении (от обычных игрушек до сложных в техническом плане вертолетов, дронов, наземных машин или судомоделей), как правило, идут в комплекте (RTR/RTF-комплектация), но они рассчитаны на «свой» установленный аккумулятор, настроены для зарядки батареи определенной емкости.

Совсем другое дело – универсальные зарядные устройства , которые справляются со всеми видами батарей, обеспечивают им любой режим заряда/разряда/хранения и которые способны балансировать каждый отдельный элемент АКБ.


Разница между первыми и вторыми не только в цене. Если радиоуправляемые модели стали вашим любимым хобби, наращивать количество зарядок, заточенных под определенный тип аккумулятора, не имеет смысла. Поэтому, каждый моделист со временем приходит к необходимости покупки универсального (многофункционального) ЗУ.


Основные правила зарядки

Выключенное состояние . Если ваш дрон заряжается через USB-разъем, всегда проводите подзарядку аккумулятора в выключенном состоянии радиоуправляемой модели. Зарядка с включателем в положении «On» грозит тем, что акум просто выйдет из строя.

Сколько времени заряжать аккумулятор . Для расчета времени зарядки разделите значение емкости аккумулятора (мАч/ mAh ) на силу тока используемого ЗУ.

Например, акум емкостью 2000 мАч, ЗУ – 2 Ач (или 2000 мАч). 2000/2000=1 (час). Время зарядки и точные характеристики каждого аккумулятора описаны в инструкции.

Если модель заряжается от компьютера или ноутбука через USB-разъем, то обычно оптимальное время для полной зарядки колеблется от 40 до 70 минут. Но, опять же, нужно смотреть инструкцию.

Когда ставить RC-модель на зарядку . Правильный ответ: как только тяги недостаточно для запуска винтов авиамодели (или для старта машины). Правило особенно актуально для литиево-полимерных аккумуляторов, которые не терпят полного разряда.


Нельзя оставлять акум на зарядке дольше расчетного времени . Это выводит его из строя.

Ток заряда для Li Po не должен быть выше значения емкости (от 0,5 С до макс 1 С). Например, для АКБ емкостью 1000 мАч, ток должен быть равен или ниже 1,0 А (но не ниже 0,5 А).

Нельзя оставлять аккумулятор на долгое время в разряженном состоянии . После запуска модели, если вы не планируете использовать ее несколько дней, зарядите АКБ, и только тогда ставьте на полку.

Литиевые аккумуляторы не имеют «эффекта памяти», поэтому хранить их нужно в заряженном состоянии. Оптимальный заряд для хранения – 60% (но не меньше 40% при напряжении 3,7 В на каждый элемент).


Зарядные устройства нового поколения: упрощаем себе жизнь

Наиболее часто в RC-моделях (особенно это касается вертолетов, квадрокоптеров и самолетов) используют литий-полимерные (Li Po или Li pol или Li polymer) аккумуляторы, которые обладают высокой энергоемкостью при малом весе.

Однако главный минус таких АКБ – привередливость к условиям эксплуатации.

Малейший выход из «зоны комфорта» по параметрам силы тока и напряжения грозит возгоранием. Для зарядки таких батарей без специального ЗУ для LiPo не обойтись, поскольку они требуют балансировки (выравнивания) напряжения по всем банкам.

Современные ЗУ имеют встроенный балансир для литий-полимерных аккумуляторов и таймер отключения.


Если раньше зарядные устройства были громоздкими и сложными в понимании, то новейшие ЗУ – это компактные девайсы, по габаритам сравнимые с пачкой сигарет. При миниатюрных размерах они показывают чудеса мощности и продуктивности.

Например, при размерах 12 см * 11 см дает ток заряда от 0,1 до 12,0 А и может заряжать сразу два аккумулятора. В нем уже встроен блок питания, так что дополнительно ничего покупать не нужно.

А работает такой прибор со всеми типами аккумуляторных батарей. Если ваш комнатный дрон заряжается через USB, то и для него в ISDT D2 Dual предусмотрено гнездо.

Настройки производятся через удобное меню, они просты в эксплуатации и имеют функцию обновления прошивки путем подключения к ПК через адаптер.


Правильная зарядка аккумуляторов любого типа обеспечивает им сохранение емкости и продолжительную жизнь.

Идите в ногу со временем и не заморачивайтесь сложностями!

Аккумулятор - необходимая часть любой радиоуправляемой модели, даже если она оборудована двигателем внутреннего сгорания. От аккумулятора питается вся бортовая электроника автомодели, а в электрических моделях они также являются основным источником энергии для движения и от их характеристик зависит очень многое.

Характеристики аккумуляторов

Ёмкость - количество запасаемой аккумулятором энергии, изменяется в миллиампер-часах (mAh). Может варьироваться в пределах от 150mAh (для микро-моделей) до 10000mAh (для силовых аккумуляторов больших моделей).

Напряжение элемента зависит от типа аккумулятора. Обычно используются аккумуляторные батареи, состоящие из 2-6 соединенных элементов.

Напряжение батареи зависит от количества и способа соединения её элементов.

Токоотдача - способность аккумулятора отдавать ток определённой величины. Измеряется в значениях ёмкости. Например, аккумулятор с ёмкостью 1000mAh и токоотдачей 5C может отдать максимальный ток 1000×5 = 5000 mA (5 ампер).

Внутреннее сопротивление определяет максимальную токоотдачу батареи. Чем меньше внутреннее сопротивление, тем выше токоотдача.

Типы аккумуляторов

В радиоуправляемых моделях могут использоваться несколько разных типов аккумуляторов, характеристики которых существенно отличаются. Практически каждый из типов обладает своими достоинствами и недостатками, а также особыми правилами обращения.

Никель-кадмиевые (NiCd)

Один из самых старых, сейчас уже почти не применяемых типов аккумуляторов. Элементы NiCd представляют собой цилиндры различных размеров, именуемые "банками", в том числе AA, AAA. Самыми ходовыми для создания батарей является размер Sub-C (толще и короче размера AA). Считаются одними из самых неприхотливых, обладают большим сроком службы (порядка 1000 циклов заряд-разряд), единственный вид аккумуляторов, которые могут храниться разряженными. Обладают одним из самых низких соотношений емкости к массе (порядка 45-65 Вт·ч/кг). Могут работать при низких температурах. Обладают выраженным "эффектом памяти": если аккумулятор начать заряжать до того, как он полностью разрядился, то в следующий раз он сможет разрядится только до этого же уровня, фактически потеряв часть своей ёмкости. Номинальное напряжение 1.2 В, рабочее напряжение от 1 до 1.35 В (1% и 100% ёмкости) на элемент.

Никель-металл-гидридные (NiMH)

Похожи по характеристикам и размерам на никель-кадмиевые аккумуляторы, обладают в полтора-два раза большей ёмкостью при той же массе (60-72 Вт·ч/кг), но меньшим количеством циклов заряд-разряд. Достаточно широко распространены, используются и как силовые в недорогих моделях с электродвигателем, и как бортовые в моделях с ДВС, а также в передатчиках. Постепенно вытесняются во всех областях применения аккумуляторами на основе лития. Имеют менее выраженный эффект памяти, чем NiCd аккумуляторы. Должны храниться полностью заряженными, напряжение не должно падать ниже 1.37 В. Номинальное напряжение 1.2 В, рабочее напряжение от 1-1.1 до 1.4 В на элемент. Плохо переносят перезаряд и переразряд (когда напряжение выходит за рекомендуемые пределы). Существуют также NiMH аккумуляторы с низким саморазрядом (LSD NiMH), обладающие улучшенными характеристиками. Жаргонное название - "нимхи".

Литий-полимерные (LiPo)

На данный момент это самый распространенный тип аккумуляторов. Выпускаются в виде плоских пластин самых различных размеров. Хотя элементы LiPo не цилиндрической формы, они также часто по аналогии с NiCd и NiMh именуются "банками". Обладают примерно в 3 раза большим отношением ёмкости к массе, чем NiMh аккумуляторы. Используются в качестве силовых аккумуляторов в мощных моделях с электродвигателем, редко в качестве бортовых аккумуляторов ДВС-моделей. Требуют очень аккуратного обращения - механическое повреждение аккумулятора, превышения тока зарядки или короткое замыкание могут привести к возгоранию! Настоятельно рекомендуется использовать при зарядке и хранении специальные несгораемые мешки ! Эффект памяти полностью отсутствует. Стареют даже если не используются, через два года теряют порядка 20% максимальной ёмкости. Номинальное напряжение 3.7 В, рабочее напряжение примерно от 3.2 до 4.2 В на элемент, выход за указанные пределы опасен. Обязательно применение специальных зарядных устройств для LiPo аккумуляторов! Должны храниться с 40% заряда (порядка 3.7 В на элемент). Технологии LiPo аккумуляторов постоянно совершенствуются и их характеристики улучшаются. Жаргонное название - "липоли" или "липохи".

Литий-железо-фосфатные (LiFePO 4)

Довольно новый тип аккумулятора, сочетающий достоинства LiPo в плане ёмкости (немного меньше) и неприхотливости NiCd. Пока мало распространен, в первую очередь из-за непривычного напряжения и малого количества типоразмеров, представленных на рынке. В основном используются как бортовые аккумуляторы ДВС-моделей и в передатчиках, но есть и силовые LiFe аккумуляторы для моделей с электродвигателем. Элементы выпускаются разными фирмами как в виде цилиндров, так и в виде пластин. Номинальное напряжение 3.3 В, рабочее напряжение от 2 до 3.65 В.

Элемент LiFePO 4 в виде пластины

Соединение элементов аккумуляторов

Напряжение одиночного элемента практически любого типа аккумулятора недостаточно почти никогда для его практического применения, поэтому аккумуляторные элементы собирают в батареи. Последовательное соединение элементов увеличивает напряжение пропорционально количеству элементов. Например, шесть соединенных последовательно NiMh элементов дадут батарею с напряжением 1.2×6 = 7.2 В. Практикуется также параллельное соединение элементов, при этом увеличивается ёмкость. Например, два элемента ёмкостью 1000mAh, соединенные параллельно, образуют батарею с таким же напряжением, как напряжение одного элемента, но ёмкостью 2000mAh. Для краткого обозначения типа соединения элементов в батарее используются обозначения вида 3S2P , которое обозначает, что в батарее использовано шесть элементов, соединенных по три последовательно и два параллельно. Например, если для сборки такой батареи использованы элементы ёмкостью 1000mAh и напряжением 1.2 В, то полученный аккумулятор будет иметь ёмкость 2000mAh и напряжение 3.6 В. В LiPo батареях не используется параллельное соединение, поэтому для их обозначения используется укороченная запись, например: 1S , 2S , 3S и т.д.

Подробнее о напряжении аккумуляторов

На аккумуляторах всегда указывается их номинальное напряжение. Как уже говорилось, для NiCd и NiMh оно составляет 1.2 В на элемент, для LiPo 3.7 В, для LiFe 3.3 В. Надо понимать, что это их среднее напряжение, на самом деле, напряжение полностью зараженного аккумулятора заметно выше и постепенно уменьшается по мере его разряда, но нелинейно. Кривая разряда у аккумуляторов различных типов разная, но практически всегда можно почувствовать, что при разряде аккумулятора автомодель начинает ехать хуже, так как её максимальная скорость зависит от напряжения аккумулятора. Это, кстати, можно считать одним из недостатков электрических автомоделей перед моделями с ДВС.

Балансировка LiPo

LiPo батареи очень чувствительны с напряжению на каждом элементе, но при этом их элементы батареи имеют свойство разряжаться неодинаково. Например, 3S батарея может иметь после разрядки следующие напряжения на своих элементах: 3.2 В, 3.5 В, 3.1 В. Такая батарея нуждается в балансировке - выравнивании напряжений на элементах батареи. Для этого у LiPo батарей имеется балансировочный разъем. Все зарядные устройства для LiPo батарей также имеют такой разъем и могут заряжать батареи, одновременно балансируя их. Чем качественнее батарея, тем меньше, теоретически, должен быть дисбаланс элементов при её работе.

Выбор аккумулятора

При выборе аккумулятора нужно руководствоваться возможностями регулятора скорости, используемого на модели. В характеристиках регулятора указывается разброс напряжений, с которыми он может работать и тип аккумуляторов. Превышение допустимого напряжение может повлечь выход регулятора из строя. Часто пределы используемых напряжений указываются не в вольтах, а в количестве "банок", например регулятор Castle Creations Mamba Monster 2 Waterproof может использовать до 6S LiPo или 18S NiMh.

Поддержка регулятором LiPo-аккумуляторов выражается в наличии в нём так называемой "отсечки". Отсечка предотвращает повреждение аккумулятора, не допуская его слишком сильного разряда. При этом модель просто резко останавливается, тогда как модель с регулятором без отсечки будет ездить всё медленнее и медленнее из-за слишком низкого напряжения аккумулятора, аккумулятор при этом, скорее всего, будет повреждён. При сильном желании использовать LiPo батареи с регулятором, у которого отсутствует функция отсечки, рекомендуется ходя бы поставить на его балансировочный разъём специальный индикатор со звуковой сигнализацией , который сообщит о разряде батареи.

Что касается выбора фирмы-производителя батарей, то для хобби мы бы рекомендовали использовать батареи китайского производителя Turnigy . Они в несколько раз дешевле дорогих фирменных батарей и полностью отрабатывают свою стоимость. Дорогие батареи высокого качества могут быть необходимы только для серьезных соревнований. Одна из оптимальных батарей для использования на багги и трагги масштаба 1/8 с двигателем 2200kv - Turnigy 4000mAh 4S 30C .

Внимание! Перед покупкой не забывайте проверять размеры батареи и вашего батарейного отсека! Размеры LiPo очень разные и могут меняться даже у одного производителя в зависимости от ёмкости, количества банок и токоотдачи.

Понравилось? Лайкни нас на Facebook