Что такое центральный процессор? Как включить все ядра процессора Что значит процессор 2 ядра

В ноябрьском номере мы довольно подробно рассмотрели особенности нового четырехъядерного процессора Intel Core 2 Extreme QX6700, сосредоточившись главным образом на его архитектурных особенностях. Кроме того, были представлены первые результаты сравнительного тестирования этого процессора. Но напомним, что это было всего лишь несколько тестов, выполненных техническими специалистами компании Intel в рамках Форума IDF 2006. Естественно, по данным тестирования четырехъядерный процессор Intel Core 2 Extreme QX6700 выглядел весьма впечатляюще по сравнению с двухъядерным процессором Intel Core 2 Extreme X8600. Однако набор использовавшихся тестов вызывал некоторое сомнение в их объективности, поэтому мы решили самостоятельно провести подробное, всестороннее тестирование процессора Intel Core 2 Extreme QX6700 в сравнении с процессором Intel Core 2 Extreme X8600.

Предисловие

Напомним, что на форуме IDF 2006 компания Intel представила новый четырехъядерный процессор Intel Core 2 Extreme QX6700 и обнародовала первые результаты его тестирования в сравнении с двухъядерным процессором Intel Core 2 Extreme Х8600. Для тестирования специалистами компании Intel были отобраны следующие бенчмарки и приложения:

  • 3DMark06 v. 1.0.2;
  • PCMark05 v. 1.1.0;
  • 3DS Max 8 SP2;
  • XMPEG 5.03 (кодек DivX 6.2.5);
  • POV-Ray 3.7 Beta 15;
  • Sony Vegas 7.0a Build 115.

Конечно же, такой набор тестов нельзя признать объективным для оценки производительности и сравнения процессоров. Действительно, 3DMark06 v. 1.0.2 - это синтетический игровой тест, который используется для тестирования процессоров и видеокарт. К сожалению, на основе его результатов нельзя делать вывод о производительности процессора в играх. И тот факт, что ПК демонстрирует высокий результат в тесте 3DMark06 v. 1.0.2, вовсе не означает, что в реальных играх ПК результаты будут такими же.

Тест PCMark05 v. 1.1 позволяет провести комплексный анализ производительности ПК и его отдельных подсистем, в том числе процессора. Несомненным достоинством этого теста является то, что для тестирования не требуется слишком много времени, однако для объективной комплексной оценки производительности ПК результатов лишь этого теста мало.

Приложение 3DS Max 8 SP2 вполне может применяться для тестирования процессора, однако специалисты компании Intel использовали в тестировании только финальный рендеринг трехмерных сцен. А ведь работа с 3DS Max 8 SP - это не только рендеринг, но и сам процесс создания сцены. Скрипты, имитирующие работу пользователя в окнах проекций, в ходе тестирования также не применялись. И хотя в данном случае основная нагрузка ложится на процессор графической карты, говорить, что результаты вообще не зависят от процессора, было бы неверно.

Приложение POV-Ray 3.7 Beta 15, в котором имеется встроенный бенчмарк, опять-таки позволяет протестировать процессор на предмет производительности при рендеринге трехмерных сцен. То же самое касается и приложения XMPEG 5.03, которое в паре с кодеком DivX 6.2.5 использовалось для конвертирования High Definition-видеоконтента.

Ну и последнее приложение - Sony Vegas 7.0a Build 115 - применялось для нелинейного видеомонтажа. В данном случае все корректно и никаких замечаний у нас нет.

Несмотря на то что каждый из рассмотренных тестов (или приложений) является широко распространенным и традиционно используется для тестирования процессоров, делать какие-либо объективные выводы о производительности процессора Intel Core 2 Extreme QX6700, основываясь лишь на результатах данного набора тестов, было бы не совсем корректно. Вполне может оказаться, что именно в этих специально отобранных тестах четырехъядерный процессор Intel Core 2 Extreme QX6700 демонстрирует свое превосходство над двухъядерным процессором Intel Core 2 Extreme Х8600, однако это вовсе не означает, что можно будет говорить о росте производительности при работе с остальными приложениями. То есть можно ли на основании, к примеру, результатов теста по конвертированию видео с использованием приложения XMPEG 5.03 в паре с кодеком DivX 6.2.5 говорить о том, что процессор Intel Core 2 Extreme QX6700 при работе с любыми приложениями по конвертированию видео позволяет получить прирост производительности в сравнении с процессором Intel Core 2 Extreme Х8600?

Для получения более объективного представления о производительности процессора Intel Core 2 Extreme QX6700 и выявления класса задач, при решении которых можно говорить о неоспоримом преимуществе четырех ядер над двумя, мы решили провести полноценное сравнительное тестирование четырехъядерного и двухъядерного процессоров с применением достаточно большого набора тестов.

Но, прежде чем переходить к рассмотрению методики тестирования и анализу результатов, приведем краткую справку об участниках тестирования.

Кратко о процессорах Intel Core 2 Extreme QX6700 и Intel Core 2 Extreme Х8600

Процессор Intel Core 2 Extreme QX6700 известен под кодовым названием Kentsfield. С точки зрения конструкции он представляет собой два двухъядерных процессора Conroe, совмещенных в одном процессорном корпусе.

Максимальное энергопотребление (TDP) четырехъядерного процессора Intel Core 2 Extreme QX6700 составляет 130 Вт, следовательно, для него требуется эффективная система охлаждения, а потому создать тихий компьютер на базе такого процессора невозможно. Максимальное энергопотребление (TDP) двухъядерного процессора Intel Core 2 Extreme X8600 несколько ниже и составляет 95 Вт.

Процессор Intel Core 2 Extreme QX6700 имеет тактовую частоту 2,66 ГГц и напряжение питания 1,238 В, частота FSB составляет 1066 МГц, а суммарный объем кэш-памяти L2 - 8 Мбайт (2x4 Мбайт). Процессор Intel Core 2 Extreme X8600 имеет тактовую частоту 2,93 ГГц и напряжение питания 1,213 В, частота FSB составляет 1066 МГц, а объем кэш-памяти L2 - 4 Мбайт.

Краткие технические характеристики обоих процессоров приведены в табл. 1.

Таблица 1. Краткие технические характеристики процессоров
Intel Core 2 Extreme QX6700 и Intel Core 2 Extreme X8600

Параметры

Intel Core 2 Extreme QX6700

Intel Core 2 Extreme X6800

Количество ядер

Тактовая частота, ГГц

Частота FSB, МГц

Объем кэш­памяти L2, Мбайт

Напряжение питания, В

Энергопотребление (максимальное), Вт

Методика тестирования

Для тестирования процессора Intel Core 2 Extreme QX6700 использовался стенд следующей конфигурации:

  • системная плата - Intel D975XBX2 (BIOS BX97510J.86A.1304.2006.0620.1451);
  • оперативная память - DDR2-800 Kingston KHX8000D2K2/2G (2x1024 Мбайт в двухканальном режиме);
  • тайминги памяти:

CAS Latency - 4,

RAS to CAS Delay - 4,

Row Precharge - 3,

Active to Precharge - 12;

Дополнительно устанавливались драйверы всех интегрированных устройств.

Как уже отмечалось, для сравнения был протестирован двухъядерный процессор Intel Core 2 Extreme X8600.

Для тестирования обоих процессоров мы применяли бенчмарки и реальные приложения, которые интенсивно нагружают процессор и память и традиционно используются для комплексного анализа производительности системы в целом:

  • игровые тесты:

Quake 4 Demo ver 1.3,

F.E.A.R. ver 1.07,

Far Cry v.1.33,

Prey ver 1.01,

Company of Heroes ver 1.0,

Serious Sam 2 Demo,

The Chronics of Riddik;

  • производительность ПК в целом:

Crystal Mark 9.0;

  • научные расчеты:

Science Mark 2.0,

Super_PI/mod 1.5 XS,

SunGard Adaptiv Credit Risk;

  • работа с 3D-графикой:

3ds Max 8.0 SP3 (скрипт SPECapc 3ds max 8 v.1.3),

Alias WaveFront Maya 6.5 (скрипт SPECapc Maya 6.5 v1.0),

SPECViewperf 9.0,

CINEBENCH 9.5,

POV-Ray v.3.7 Beta 17 (встроенный тест);

  • распознавание текста: ABBYY FineReader 8.0 Pro;
  • обработка цифровых фотографий: Adobe Photoshop CS2;
  • аудиокодирование: Lame 4.0;
  • архивирование: 7-ZIP 4.42;
  • видеокодирование:

XMPEG 5.2 Beta 2,

DivX Converter 6.1.1,

TMPGEnc 2.524,

MainConcept MPEG Encoder 1.51,

MainConcept H.264 Encoder v.2.0.15.

Все тесты запускались по три раза, а по результатам измерений вычислялись среднее значение и доверительный диапазон измерения с вероятностью 95%.

Описание и настройка тестов

Игровые тесты

Группу игровых тестов составили наиболее популярные сегодня динамичные игры и синтетический бенчмарк 3DMark06 v.1.0.2, который предназначен для определения производительности ПК в игровых приложениях и традиционно используется для тестирования видеокарт. Однако результаты этого теста зависят не только от видеокарты, но и от возможностей центрального процессора.

Чтобы максимально загрузить именно процессор, а не видеокарту, при тестировании все игры и бенчмарк 3DMark06 v.1.0.2 запускались при разрешении 800x600 точек, а видеодрайвер настраивался на максимальную производительность. Кроме того, с целью увеличения нагрузки на центральный процессор в играх не использовались технологии антиалиасинга и анизотропной фильтрации. Все игры настраивались на максимальную производительность за счет отказа от всех эффектов, повышающих реалистичность изображения, но сказывающихся на падении производительности. Описание настроек каждой игры - довольно утомительное и скучное занятие, поэтому просто напомним их главный принцип: отключаются все эффекты, которые можно отключить.

Отметим, что в играх Quake 4 ver. 1.3 и Prey ver 1.014 мы применяли демо-версии, написанные специально для этого тестирования, а во всех остальных - те, что входят в состав игр.

В игровых тестах измерялась скорость обработки кадров, то есть количество кадров в секунду (frame per second, fps).

В тесте 3DMark06 v.1.0.2 результат, который рассчитывается по довольно сложной формуле, измеряется в безразмерных единицах, причем чем их больше, тем лучше.

Производительность ПК в целом

В группу тестов, ориентированных на измерение общей производительности ПК, вошли PCMark05 и CrystalMark 9.0.

Первый тест предназначен для комплексного анализа производительности ПК. В нем проводится ряд подтестов (всего 48), которые акцентированно нагружают различные подсистемы ПК: процессор, память, графическую подсистему, подсистему хранения данных. По результатам теста рассчитывается интегральный показатель производительности системы в целом, а также индексы производительности отдельных подсистем ПК (CPU Score, Memory, Graphics, HDD).

Результаты теста PCMark05 измеряются в безразмерных единицах, причем чем выше результат, тем лучше.

Второй тест также является комплексным и предназначен для анализа производительности ПК в целом и отдельных его подсистем. В данном бенчмарке проводятся отдельные подтесты с преимущественной нагрузкой на центральный процессор (ALU, FPU), память (MEM), подсистему хранения данных (HDD), графическую подсистему (GDI, D2D, OGL).

По результатам теста вычисляется безразмерный интегральный показатель производительности (Mark), а также показатели производительности отдельных подсистем ПК.

Опять-таки - чем выше результат, тем лучше.

Научные расчеты

В составе группы тестов, имитирующих научные расчеты, оказались Science Mark 2.0, Super_PI/mod 1.5 XS и SunGard Adaptiv Credit Risk.

Тест Science Mark 2.0 предназначен для определения производительности ПК при проведении научных расчетов. Основная нагрузка в нем приходится на процессор и память.

Результаты теста представляются в безразмерных единицах. Более высокому результату соответствует более высокая производительность.

В тесте Super_PI/mod 1.5 XS с заданной точностью (число знаков после запятой) вычисляется число PI. В нашем тестировании мы задали самую высокую точность - 32 М, то есть 32 млн знаков после запятой.

Результатом теста является время выполнения расчета, выраженное в секундах. Понятно, что чем меньше время, тем выше производительность процессора.

SunGard Adaptiv Credit Risk - это программа, которая применяется для расчета кредитных рисков по многим факторам на основе анализа огромной совокупности данных. Она является индустриальным стандартом и используется в крупных корпорациях. Ориентированная на применение в кластерных системах и мощных серверах, эта программа поддерживает многопроцессорность и хорошо масштабируется с ростом числа процессоров.

Результатом теста на основе программы SunGard Adaptiv Credit Risk является время выполнения расчетов, выраженное в секундах. Чем меньше время, тем выше производительность процессора.

Архивирование

Для архивирования использовался многопоточный архиватор 7-Zip 4.42. Архивированию подвергался тестовый каталог размером 135 Мбайт, который сжимался до 66,9 Мбайт, причем задавалась максимальная степень сжатия (Ultra).

Результатом теста является время выполнения архивирования при этом чем меньше время, тем, естественно, лучше.

Аудиокодирование

Для кодирования аудиофайлов из формата WAV в формат MP3 применялся популярный кодек Lame 4.0. Кодированию подвергался WAV-файл с исходным размером 195 Мбайт, который конвертировался в MP3-файл размером 17,7 Мбайт. Кодек запускался из командной строки с настройками по умолчанию (44,1 кГц, 128 Кбит/с).

Результатом теста является время конвертирования, выраженное в секундах, и чем оно меньше, тем лучше.

Распознавание текста

Для распознавания текста использовалась программа ABBYY FineReader 8.0 Pro. В качестве документа для распознавания был выбран 49-страничный PDF-файл.

Результатом теста является время распознавания документа, выраженное в секундах, и чем оно меньше, тем лучше.

3D-графика

В группу тестов, выявляющих производительность процессора при работе с 3D-приложениями, вошли SPECapc 3ds max8 v.1.3, SPECapc for Maya 6.5, POV-Ray 3.7 Beta 17, CINEBENCH 9.5 и SPECViewperf 9.0.3.

Тест SPECapc 3ds max8 v.1.3 представляет собой скрипт для приложения Autodesk 3DS max 8.0 SP3 и предназначен для тестирования платформы с приоритетной нагрузкой на процессор и видеокарту. В нем используется как рендеринг конечных 3D-сцен с преимущественной нагрузкой на центральный процессор, так и типичные задачи по созданию и редактированию сцены с преимущественной нагрузкой на процессор видеокарты. Для того чтобы переложить основную нагрузку на процессор и минимизировать влияние видеокарты на конечный результат теста, для приложения SPECapc 3ds max8 v.1.3. применялся программный видеодрайвер (Software).

Измеряемой характеристикой в тесте SPECapc 3ds max8 v.1.3 является время выполнения задач. На основе времени выполнения отдельных задач по созданию и редактированию сцены рассчитывается интегральный показатель производительности видеокарты, нормированный относительно результатов некоторого референсного ПК. Аналогично на основе времени выполнения рендеринга финальных сцен рассчитывается интегральный показатель производительность центрального процессора, который также нормирован относительно результатов некоторого референсного ПК.

Бенчмарк SPECapc for Maya 6.5 предназначен для тестирования платформы в приложении Alias WaveFront Maya 6.5 с нагрузкой на процессор, видеокарту и дисковую подсистему. Тест состоит из 30 подтестов.

Результат теста представляется в виде двух нормированных составляющих: нормированная производительность процессора и интегральная нормированная производительность. При расчете интегральной производительности вводятся весовые коэффициенты: для подтестов с нагрузкой на видеокарту - 0,7; для подтестов с нагрузкой на процессор - 0,2 и для подтестов с нагрузкой на дисковую подсистему - 0,1.

Для расчета нормированных результатов теста используется референсный ПК с процессором Intel Xeon 2,4 ГГц, 2 Гбайт памяти PC800 ECC RDRAM и видеокартой NVIDIA Quadro FX 1000.

Бенчмарк POV-Ray 3.7 Beta 17 предназначен для оценки скорости рендеринга, и основная нагрузка в тесте ложится на процессор. В тесте применяется встроенный бенчмарк, а результатом его является скорость редеринга в PPS (Pixel Per Second).

Тест CINEBENCH 9.5 предназначен для тестирования графических карт и процессоров и позволяет определить скорость редеринга. В нем используется подтест CPU Benchmark, а конечным результатом является скорость рендеринга при применении всех процессоров системы (для многопроцессорных систем), выраженная в безразмерных единицах CINEBENCH.

SPECViewperf 9.0.3 - это тест, предназначенный для определения производительности графической подсистемы в профессиональных OpenGL-приложениях. Он традиционно используется для тестирования графических станций и профессиональных видеокарт, его результаты в немалой степени зависят от производительности процессора.

Результатами теста являются относительные условные единицы (безразмерные), которые определяют, во сколько раз в данном тесте производительность тестируемого ПК выше производительности некоторого эталонного ПК.

Обработка цифровых фотографий

Для оценки производительности процессора при работе с приложениями по редактированию цифровых фотографий применялся скрипт для приложения Adobe Photoshop CS2. В нем на исходное изображение (цифровая фотография) в формате TIFF последовательно накладываются фильтры и рассчитывается суммарное время выполнения всех операций. Результатом теста является время выполнения задачи, выраженное в секундах.

Видеокодирование

Группу тестов для оценки производительности видеокодирования составили популярные программные конверторы и кодеки. Всего использовалось пять приложений: XMPEG 5.0.3, DivX 6.4 Converter, TMPGEnc 2.524, MainConcept MPEG Encoder 1.51 и MainConcept H.264 Encoder v. 2.0.

Утилита XMPEG 5.0.3 применялась в паре с кодеком DivX 6.4.1 Codec. С ее помощью видеоклип длительностью 24 с и размером 51,8 Мбайт в формате MPEG-2 с разрешением 1920x1980 точек и битрейтом 18 000 Кбит/с конвертировался в HD-видеофайл размером 36,5 Мбайт с битрейтом 7800 Кбит/с и разрешением 1920x1088.

Утилита DivX 6.4 Converter использовалась для конвертирования видеоклипа размером 51,8 Мбайт в формате MPEG-2 с разрешением 1920x1980 точек и битрейтом 18 000 Кбит/с в видеофайл DivХ размером 11 Мбайт и разрешением 1280x720. В утилите DivX 6.1.1 Converter применялся профиль High Definition.

Утилита TMPGEnc 2.524 предназначена для конвертирования AVI-файлов в формат MPEG для записи на DVD-диски. В нашем случае исходный AVI-файл размером 416 Мбайт и длительностью 2 мин 1 с преобразовывался в видеофайл в MPEG-2 (m2v+wav) размером 115 Мбайт в формате DVD 4:3 NTSC. Разрешение кадров устанавливалось равным 720x480 точек, битрейт - 8000 Кбит/с, скорость воспроизведения - 29,97 fps.

Утилита MainConcept MPEG Encoder 1.51 тоже предназначена для конвертации AVI-файлов в формат MPEG для записи на DVD-диски. В нашем случае исходный AVI-файл размером 416 Мбайт и длительностью 2 мин 1 с преобразовывался в видеофайл MPEG-2 (mpg) размером 111 Мбайт в формате DVD 4:3 NTSC. Разрешение кадров - 720x480 точек, скорость воспроизведения - 29,97 fps, скорость видеокодирования - 8000 Кбит/с.

С помощью утилиты MainConcept H.264 Encoder v. 2.0 исходный AVI-файл размером 416 Мбайт и длительностью 2 мин 1 при помощи кодека H.264 High преобразовывался в видеофайл MPEG-2 (mpg) размером 295 Мбайт в формате DVD 4:3 NTSC. Разрешение кадров устанавливалось равным 720x480 точек, скорость воспроизведения - 29,97 fps.

Результаты тестирования

Результаты сравнительного тестирования процессоров представлены в табл. 2.

Таблица 2. Результаты сравнительного тестирования процессоров

Intel Core 2 Extreme X8600

Intel Core 2 Extreme QX6700

F.E.A.R. ver 1.07, fps

Quake 4 Demo ver 1.3, fps

Far Cry v.1.33, fps

Prey ver 1.01, fps

Company of Heroes ver 1.0, fps

Half-Life 2, fps

Serious Sam 2 Demo, fps

The Chronics of Riddik, fps

HDR/SM 3.0 Score

SPECViewperf 9.0.3

SPECapc 3ds max8 v.1.3, с

SPECapc Maya 6.5 v1.0

Pov-Ray 3.7 Beta 17 (встроенный тест), PPS

CINEBENCH 9.5 (4 CPU Render)

ABBYY Finereader 8.0 Pro, c

Adobe Photoshop CS2, с

Science Mark 2.0

Molecular Dynamics

Memory Benchmarks

Super_PI/mod 1.5 XS (32 M), c

SunGard Adaptiv Credit Risk, c

Архивирование (7-Zip 4.42), с

Аудиокодирование (Lame 4.0), с

Видеокодирование

DivX Converter 6.4 (High Definition), с

TMPEGEnc 2.524, с

MainConcept H.264 Encoder v.2.0, с

MainConcept MPEG Encoder v.1.51, с

Понятно, что анализ столь большого числа данных провести довольно сложно, поэтому мы решили разбить результаты тестов по логическим группам и вычислить интегральный нормированный показатель производительности по каждой группе тестов. При этом для нормирования результатов использовались результаты процессора Intel Core 2 Extreme X8600, то есть результаты, продемонстрированные данным процессором, принимались за единицу.

Первая логическая группа тестов - это игровые приложения. В данном случае интегральный показатель производительности рассчитывался как среднее геометрическое от нормированных результатов во всех играх (бенчмарк 3DMark06 не учитывался). Тест 3DMark06 мы решили вынести отдельно, поскольку его результат слабо коррелируется с тем, что наблюдается в реальных играх.

Следующую логическую группу составили тесты видеокодирования. В нее вошли XMPEG 5.0.3, DivX Converter 6.4, TMPEGEnc 2.524, MainConcept H.264 Encoder v.2.0 и MainConcept MPEG Encoder v.1.51. Интегральный показатель производительности рассчитывался как среднее геометрическое от нормированных результатов во всех тестах. Остальные тесты мы решили не объединять по логическим группам, что связано с их разнонаправленностью и довольно разными, слабо коррелирующимися друг с другом результатами.

Нормированные результаты в таком упрощенном виде представлены на диаграмме.

Теперь давайте проанализируем полученные данные.

Прежде всего рассмотрим результаты тестирования в играх. Как видите, четырехъядерный процессор не только не имеет преимуществ по сравнению с двухъядерным, но и проигрывает ему по производительности примерно 10%. Поэтому утверждение, что четырехъядерный процессор ориентирован на мощные игровые ПК, - не более чем миф. Сегодня не существует игр, которые могли бы получать преимущество от применения четырехъядерной архитектуры.

Это, конечно, не означает, что они не появятся завтра. Тем не менее для современных игр использование четырехъядерного процессора нецелесообразно.

Результаты же игрового синтетического теста 3DMark06 приводят к совершенно противоположным выводам. Прирост производительности в 3DMark06 CPU Score составил 58%, что очень впечатляет. Правда, его интегральный результат (3DMark Score) более скромный - прирост производительности всего 5%, однако речь все-таки идет о приросте, а не о снижении производительности. Еще раз напомним, что тест 3DMark06 несколько оторван от жизни и делать на основании его результатов выводы о том, что процессор Intel Core 2 Extreme QX6700 имеет преимущество в игровых приложениях, все же было бы неправильно.

Следующий тест - PCMark05. Его результаты опять-таки неоднозначны. В PCMark05 CPU Score процессор Intel Core 2 Extreme QX6700 показал прирост производительности в 56%, однако интегральный результат данного теста (PCMark05 Score) одинаков для обоих процессоров. Дело в том, что увеличение результата PCMark05 CPU Score компенсируется снижением результатов PCMark05 Memory и PCMark05 Graphics. Поэтому если относиться к данному тесту как к комплексному тесту, анализирующему производительность ПК в целом, то нужно отметить, что для набора задач, используемых в тесте PCMark05, система на базе четырехъядерного процессора Intel Core 2 Extreme QX6700 не имеет преимуществ в сравнении с системой на базе процессора Intel Core 2 Extreme X8600.

В тесте CrystalMark 9.0 Intel Core 2 Extreme QX6700 продемонстрировал довольно неплохой прирост производительности. Так, общий результат (Mark) вырос на 26%, а результаты подтестов, ориентированных на загрузку процессора (ALU, FPU), - даже на 77%.

Теперь рассмотрим результаты тестирования с использованием 3D-приложений (SPECapc 3ds max8 v.1.3, SPECapc for Maya 6.5, POV-Ray 3.7 Beta 17, CINEBENCH 9.5 и SPECViewperf 9.0.3).

В тесте SPECapc 3ds max8 v.1.3 в задачах, связанных с рендерингом финальных сцен, процессор Intel Core 2 Extreme QX6700 позволил получить прирост производительности в 46%, что является очень хорошим показателем. В то же время в задачах, касающихся работы в окнах проекций (повороты, трансформация, масштабирование и т.д.), был получен не прирост, а 10-процентный проигрыш в производительности.

В тесте SPECapc for Maya 6.5, где нет рендеринга финальных сцен, мы получили аналогичную картину - падение производительности на 7%.

В тесте POV-Ray 3.7 Beta 17, который определяет исключительно скорость рендеринга, как и ожидалось, процессор Intel Core 2 Extreme QX6700 обеспечил прирост производительности на целых 81%.

Аналогичная картина наблюдалась и в тесте CINEBENCH 9.5, где опять-таки измеряется скорость рендеринга. Четырехъядерный процессор позволил сократить время рендеринга на 48% в сравнении с двухъядерным.

В тесте SPECViewperf 9.0.3 интегральный результат для процессора Intel Core 2 Extreme QX6700, который мы определили как среднее геометрическое от нормированных результатов всех подтестов, на 5% меньше, чем для процессора Intel Core 2 Extreme X8600. Данный тест, конечно, предназначен для тестирования профессиональных видеокарт, но, как мы уже отмечали, его результат зависит в том числе и от процессора, и в данном случае наличие четырехъядерного процессора не способствует увеличению производительности.

В тестах, имитирующих научные расчеты, результаты неоднозначны. В тестах Science Mark 2.0 и Super_PI/mod 1.5 XS Intel Core 2 Extreme QX6700 продемонстрировал снижение производительности на 7 и 3% соответственно. Однако это проблема, скорее, самих тестов, нежели процессора. Дело в том, что данные тесты являются однопоточными и плохо распараллеливаются на несколько ядер. Поэтому ожидать, что многоядерная архитектура позволит получить в них прирост производительности, не приходится.

Тест SunGard Adaptiv Credit Risk - это уже не бесплатная утилита, а серьезное приложение, предназначенное для использования в крупных корпорациях и изначально ориентированное на многопроцессорные серверы. В данном случае процессор Intel Core 2 Extreme QX6700 в полной мере раскрывает свое преимущество - прирост производительности составил 79%!

При работе с приложением Adobe Photoshop CS2 процессор Intel Core 2 Extreme QX6700 позволил получить хоть и не очень большой (всего 16%), но все же прирост производительности. А вот с приложением ABBYY FineReader 8.0 Pro для распознавания текста ситуация обратная. В данном случае использование процессора Intel Core 2 Extreme QX6700 привело к снижению производительности на 5%.

Архивирование данных с помощью архиватора 7-Zip 4.42 также дало незначительное (на 4%) падение производительности при применении четырехъядерного процессора, а в задачах по аудиоконвертированию с использованием кодека Lame 4.0 оно составило уже 9%.

Относительно тестов по архивированию данных и аудиоконвертированию нужно сделать одно замечание. В принципе, даже в этих тестах можно попытаться выявить преимущества многоядерной архитектуры. Для этого нужно запускать одновременно несколько программных сессий. Если, к примеру, нужно конвертировать несколько WAV-файлов, то можно запустить одновременно несколько сессий (это делается путем написания соответствующего BAT-файла) и конвертировать каждый файл с использованием отдельной сессии. Лучше, конечно, найти соответствующую программную оболочку для кодека, которая «умела» бы делать это автоматически. В этом случае четырехъядерный процессор действительно позволит существенно сократить время конвертирования аудиофайлов.

Последняя группа тестов, которую нам осталось рассмотреть, - это приложения для видеокодирования. В данном случае во всех приложениях четырехъядерный процессор продемонстрировал свое преимущество. В зависимости от конкретного приложения и от формата видеоданных прирост производительности составил от 10 до 66%.

Выводы

Итак, какие же выводы можно сделать по результатам проведенного тестирования? Четырехъядерный процессор Intel Core 2 Extreme QX6700 не оправдал наших ожиданий. Но, возможно, все дело в том, что под впечатлением от нового семейства двухъядерных процессоров Intel Core 2 Duo они были очень завышены.

В настоящее время потенциальные возможности, реализованные в процессоре Intel Core 2 Extreme QX6700, просто невозможно раскрыть, поскольку пользовательских приложений, способных получить выигрыш от четырехъядерной архитектуры процессора, сегодня не так много. Исключение составляют задачи по видеокодированию и финальному рендерингу трехмерных сцен, при решении которых в ходе тестирования преимущество четырехъядерного процессора было неоспоримым. Соответственно Intel Core 2 Duo было бы правильно позиционировать как процессор для графических станций и ПК, использующихся преимущественно для обработки видео. В остальных случаях целесообразность применения четырехъядерного процессора весьма сомнительна.

Для домашних же пользователей ПК на базе четырехъядерного процессора - это, скорее, экзотика или, если угодно, один из способов пустить пыль в глаза, но никак не востребованная необходимость.

В большинстве случаев компьютер на базе процессора Intel Core 2 Extreme QX6700 уступает по производительности ПК на базе процессора Intel Core 2 Extreme X8600. Поэтому позиционировать его как процессор для высокопроизводительных домашних ПК пока преждевременно. Конечно, незначительное падение производительности, наблюдаемое в играх и других приложениях, невозможно заметить на глаз. Все равно компьютер на базе процессора Intel Core 2 Extreme QX6700 является высокопроизводительным решением. Вопрос только в том, зачем и кому он нужен, если двухъядерный процессор позволяет получить большую производительность при решении всех задач, за исключением рендеринга и видеокодирования, причем за меньшие деньги и при меньшем энергопотреблении.

Однако компьютер приобретается не на один год, а четырехъядерная архитектура является хорошим заделом на будущее. Процессор Intel Core 2 Extreme QX6700 опередил свое время, но уже завтра ситуация может измениться. Сейчас инфраструктура ПО не готова применять преимущества четырехъядерных процессоров. Но тот факт, что в скором времени все новые приложения будут поддерживать многоядерность, не вызывает сомнений.

Зачастую приходится слышать заявления, что преимуществами многоядерной архитектуры можно воспользоваться уже сегодня - не нужно ждать светлого будущего. Все что для этого надо - привыкнуть к работе в многозадачном режиме, когда на компьютере одновременно выполняется несколько различных приложений, например антивирусное сканирование и аудиокодирование или игра. Отчасти это действительно так, но… лишь отчасти. Если серьезно, то это не более чем маркетинговый миф. Чтобы убедиться в этом, попробуйте запустить задачу конвертирования видеофильма (например, пересжать фильм для PocketPC) и поработать в Microsoft Word или просто разложить пасьянс на компьютере. Интересно, через сколько минут вам это надоест? Между тем заметим, что большинство видеоконверторов под PocketPC (например, Omniquiti Lathe 1.5) являются однопоточными и не способны утилизировать одновременно несколько ядер процессора, то есть одно ядро целиком загружено, а все остальные при этом простаивают. Казалось бы, ничто не мешает при этом возложить на остальные ядра решение других задач. Если бы не одно «но». Дело в том, что в подобного рода сценариях быстродействие системы в целом определяется отнюдь не возможностями процессора - ведь есть еще жесткий диск, память и различные шины с ограниченной пропускной способностью. Велика вероятность того, что два или более одновременно выполняемых приложений начнут конкурировать за одни и те же (отнюдь не процессорные) ресурсы ПК, что не позволит повысить производительность.

Ранее мы пришли к выводу, что эффективность использования четырехъядерного процессора в домашних ПК довольно спорна. Однако мы еще не рассмотрели другой немаловажный аспект - маркетинг, который, как известно, является двигателем прогресса. В конечном счете не важно, плох новый процессор или хорош, - если по маркетинговым соображениям он нужен компании, то непременно будет выпущен.

Однако зачем компания Intel так торопилась выпустить новый, четырехъядерный процессор, если процессоры семейства Intel Core 2 Duo уже стали безусловными лидерами рынка? Вопрос этот отнюдь не банален и довольно сложен. Во-первых, для компании Intel процессор Intel Core 2 Extreme QX6700 - это своего рода побочный продукт производства, не требующий серьезных финансовых затрат: с технологической точки зрения производство двухъядерных процессоров Conroe и четырехъядерных Kentsfield мало чем различается. Различия есть лишь на этапе упаковки, которая производится на специализированных заводах в Малайзии. Но этот процесс компания Intel уже отладила: по технологии упаковки двух двухъядерных кристаллов в один корпус серверные четырехъядерные процессоры Xeon не отличаются от процессоров Intel Core 2 Extreme QX6700.

В самом деле, если производство четырехъядерных процессоров не требует никаких дополнительных финансовых затрат, то почему бы его не начать?

Во-вторых, появление четырехъядерного процессора - это следствие амбициозных планов компании Intel. В очередной раз завоевать звание лидера индустрии, вывести на рынок продукт, которого нет у конкурентов, - это дорогого стоит. А в том, что с технологической точки зрения Intel Core 2 Extreme QX6700 - это действительно огромный шаг вперед, сомневаться не приходится.

Есть, на наш взгляд, и еще одна, третья причина столь поспешного выпуска четырехъядерного процессора. В конкурентной борьбе между Intel и AMD на каждый шаг одной компании другая делает ответный ход. И конечно же, AMD не могла не отреагировать на выпуск четырехъядерного процессора Intel Core 2 Extreme QX6700. Об этом прекрасно знали в компании Intel, как, впрочем, и о том, что отвечать AMD нечем. Что же из этого получилось? Выпуск четырехъядерного процессора Intel Core 2 Extreme QX6700 заставил компанию AMD создать довольно странное и априори провальное решение под кодовым названием AMD 4x4, предполагающее использование двух двухъядерных процессоров вместо одного четырехъядерного. Почему оно странное? На протяжении всего последнего года компания AMD упорно пыталась доказать свое лидерство в области процессоров с низким энергопотреблением. Кроме того, она всегда провозглашала, что повышение тактовой частоты - это не метод для увеличения производительности процессоров. Выпуск решения AMD 4x4 противоречит проводимой компанией политике. Дело в том, что к энергосберегающим платформам оно не имеет никакого отношения, так как потребляет много электроэнергии и требует очень эффективной (а значит, очень шумной) системы охлаждения. Кроме того, новые двухъядерные процессоры AMD (FX-70, FX-72 и FX-74) - это не что иное, как разогнанные варианты старых процессоров в новом корпусе, рассчитанном на разъем Socket F (1207 FX).

Нормированные результаты сравнительного тестирования процессоров

Первые результаты тестирования решения AMD 4x4, которые были получены в американских и европейских тестовых лабораториях, позволяют сделать следующие выводы. По производительности решение AMD 4x4 с двумя двухъядерными процессорами AMD Athlon 64 FX-74 проигрывает решению на базе одного четырехъядерного процессора Intel Core 2 Extreme QX6700 практически во всех тестах. При этом энергопотребление системы AMD 4x4 примерно в два раза выше, к тому же требуется применение мощных (не ниже 600 Вт) блоков питания. Стоимость AMD 4x4 существенно выше, чем у решения на основе процессора Intel Core 2 Extreme QX6700. Таким образом, ответ на вопрос: «А кому это решение нужно?», ясен. Появление четырехъядерного процессора Intel Core 2 Extreme QX6700 вынудило компанию AMD потратить деньги и выпустить на рынок новое семейство парных двухъядерных процессоров, которое обречено на неудачу.

Первые компьютерные процессоры с несколькими ядрами появились на потребительском рынке ещё в середине двухтысячных, но множество пользователей до сих пор не совсем понимает — что это такое, многоядерные процессоры, и как разобраться в их характеристиках.

Видео-формат статьи «Вся правда о многоядерных процессорах»

Простое объяснение вопроса «что такое процессор»

Микропроцессор — одно из главных устройств в компьютере. Это сухое официальное название чаще сокращают до просто «процессор») . Процессор — микросхема, по площади сравнимая со спичечным коробком . Если угодно, процессор — это как мотор в автомобиле. Важнейшая часть, но совсем не единственная. Есть у машины ещё и колёса, и кузов, и проигрыватель с фарами. Но именно процессор (как и мотор автомобиля) определяет мощность «машины».

Многие называют процессором системный блок — «ящик», внутри которого находятся все компоненты ПК, но это в корне неверно. Системный блок — это корпус компьютера вместе со всеми составляющими частями — жёстким диском, оперативной памятью и многими другими деталями.

Функция процессора — вычисления . Не столь важно, какие именно. Дело в том, что вся работа компьютера завязана исключительно на арифметических вычислениях. Сложение, умножение, вычитание и прочая алгебра — этим всем занимается микросхема под названием «процессор». А результаты таких вычислений выводятся на экран в виде игры, вордовского файла или просто рабочего стола.

Главная часть компьютера, которая занимается вычислениями — вот, что такое процессор .

Что такое процессорное ядро и многоядерность

Испокон процессорных «веков» эти микросхемы были одноядерными. Ядро — это, фактически, сам процессор. Его основная и главная часть. Есть у процессоров и другие части — скажем, «ножки»-контакты, микроскопическая «электропроводка» — но именно тот блок, который отвечает за вычисления, называется ядром процессора . Когда процессоры стали совсем небольшими, то инженеры решили совместить внутри одного процессорного «корпуса» сразу несколько ядер.

Если представить процессор в виде квартиры, то ядро — это крупная комната в такой квартире. Однокомнатная квартира — это одно процессорное ядро (крупная комната-зал), кухня, санузел, коридор… Двухкомнатная квартира — это уже как два процессорных ядра вместе с прочими комнатами. Бывают и трёх-, и четырёх, и даже 12-комнатные квартиры. Также и в случае с процессорами: внутри одного кристалла-«квартиры» может быть несколько ядер-«комнат».

Многоядерность — это разделение одного процессора на несколько одинаковых функциональных блоков. Количество блоков — это число ядер внутри одного процессора.

Разновидности многоядерных процессоров

Бытует заблуждение: «чем больше ядер у процессора — тем лучше». Именно так стараются представить дело маркетологи, которым платят за создание такого рода заблуждений. Их задача — продавать дешёвые процессоры, притом — подороже и в огромных количествах. Но на самом деле количество ядер — далеко не главная характеристика процессоров.

Вернёмся к аналогии процессоров и квартир. Двухкомнатная квартира дороже, удобнее и престижнее однокомнатной. Но только если эти квартиры находятся в одном районе, оборудованы одинаково, да и ремонт у них схожий. Существуют слабенькие четырёхядерные (а то и 6-ядерные) процессоры, которые значительно слабее двухядерных. Но поверить в это сложно: ещё бы, магия крупных чисел 4 или 6 против «какой-то» двойки. Однако именно так и бывает весьма и весьма часто. Вроде как та же четырёхкомнатная квартира, но в убитом состоянии, без ремонта, в совершенно отдалённом районе — да ещё и по цене шикарной «двушки» в самом центре.

Сколько бывает ядер внутри процессора?

Для персональных компьютеров и ноутбуков одноядерные процессоры толком не выпускаются уже несколько лет, а встретить их в продаже — большая редкость. Число ядер начинается с двух. Четыре ядра — как правило, это более дорогие процессоры, но отдача от них присутствует. Существуют также 6-ядерные процессоры, невероятно дорогие и гораздо менее полезные в практическом плане. Мало какие задачи способны получить прирост производительности на этих монструозных кристаллах.

Был эксперимент компании AMD создавать и 3-ядерные процессоры, но это уже в прошлом. Получилось весьма неплохо, однако их время прошло.

Кстати, компания AMD также производит многоядерные процессоры, но, как правило, они ощутимо слабее конкурентов от Intel. Правда, и цена у них значительно ниже. Просто следует знать, что 4 ядра от AMD почти всегда окажутся заметно слабее, чем те же 4 ядра производства Intel.

Теперь вы знаете, что у процессоров бывает 1, 2, 3, 4, 6 и 12 ядер. Одноядерные и 12-ядерные процессоры — большая редкость. Трёхядерные процессоры — дело прошлого. Шестиядерные процессоры либо очень дороги (Intel), либо не такие уж сильные (AMD), чтобы переплачивать за число. 2 и 4 ядра — самые распространённые и практичные устройства, от самых слабых до весьма мощных.

Частота многоядерных процессоров

Одна из характеристик компьютерных процессоров — их частота. Те самые мегагерцы (а чаще — гигагерцы). Частота — важная характеристика, но далеко не единственная . Да, пожалуй, ещё и не самая главная. К примеру, двухядерный процессор с частотой 2 гигагерца — более мощное предложение, чем его одноядерный собрат с частотой 3 гигагерца.

Совсем неверно считать, что частота процессора равна частоте его ядер, умноженной на количество ядер. Если проще, то у 2-ядерного процессора с частотой ядра 2 ГГц общая частота ни в коем случае не равна 4 гигагерцам! Даже понятия «общая частота» не существует. В данном случае, частота процессора равна именно 2 ГГц. Никаких умножений, сложений или других операций.

И вновь «превратим» процессоры в квартиры. Если высота потолков в каждой комнате — 3 метра, то общая высота квартиры останется такой же — всё те же три метра, и ни сантиметром выше. Сколько бы комнат не было в такой квартире, высота этих комнат не изменяется. Так же и тактовая частота процессорных ядер . Она не складывается и не умножается.

Виртуальная многоядерность, или Hyper-Threading

Существуют ещё и виртуальные процессорные ядра . Технология Hyper-Threading в процессорах производства Intel заставляет компьютер «думать», что внутри двухядерного процессора на самом деле 4 ядра. Очень похоже на то, как один-единственный жёсткий диск делится на несколько логических локальные диски C, D, E и так далее.

Hyper- Threading — весьма полезная в ряде задач технология . Иногда бывает так, что ядро процессора задействовано лишь наполовину, а остальные транзисторы в его составе маются без дела. Инженеры придумали способ заставить работать и этих «бездельников», разделив каждое физическое процессорное ядро на две «виртуальные» части. Как если бы достаточно крупную комнату разделили перегородкой на две.

Имеет ли практический смысл такая уловка с виртуальными ядрами ? Чаще всего — да, хотя всё зависит от конкретных задач. Вроде, и комнат стало больше (а главное — они используются рациональнее), но площадь помещения не изменилась. В офисах такие перегородки невероятно полезны, в некоторых жилых квартирах — тоже. В других случаях в перегораживании помещения (разделении ядра процессора на два виртуальных) смысла нет вообще.

Отметим, что наиболее дорогие и производительные процессоры класса Core i7 в обязательном порядке оснащены Hyper- Threading . В них 4 физических ядра и 8 виртуальных. Получается, что одновременно на одном процессоре работают 8 вычислительных потоков. Менее дорогие, но также мощные процессоры Intel класса Core i5 состоят из четырёх ядер, но Hyper Threading там не работает. Получается, что Core i5 работают с 4 потоками вычислений.

Процессоры Core i3 — типичные «середнячки», как по цене, так и по производительности. У них два ядра и никакого намёка на Hyper-Threading. Итого получается, что у Core i3 всего два вычислительных потока. Это же относится и к откровенно бюджетным кристаллам Pentium и Celeron . Два ядра, «гипе-трединг» отсутствует = два потока.

Нужно ли компьютеру много ядер? Сколько ядер нужно в процессоре?

Все современные процессоры достаточно производительны для обычных задач . Просмотр интернета, переписка в соцсетях и по электронной почте, офисные задачи Word-PowerPoint-Excel: для этой работы подойдут и слабенькие Atom, бюджетные Celeron и Pentium, не говоря уже о более мощных Core i3. Двух ядер для обычной работы более чем достаточно. Процессор с большим количеством ядер не принесёт значительного прироста в скорости.

Для игр следует обратить внимание на процессоры Core i3 или i5 . Скорее, производительность в играх будет зависеть не от процессора, а от видеокарты. Редко в какой игре потребуется вся мощь Core i7. Поэтому считается, что игры требуют не более четырёх процессорных ядер, а чаще подойдут и два ядра.

Для серьёзной работы вроде специальных инженерных программ, кодирования видео и прочих ресурсоёмких задач требуется действительно производительная техника . Часто здесь задействуются не только физические, но и виртуальные процессорные ядра. Чем больше вычислительных потоков, тем лучше. И не важно, сколько стоит такой процессор: профессионалам цена не столь важна.

Есть ли польза от многоядерных процессоров?

Безусловно, да. Одновременно компьютер занимается несколькими задачами — хотя бы работа Windows (кстати, это сотни разных задач) и, в тот же момент, проигрывание фильма. Проигрывание музыки и просмотр интернета. Работа текстового редактора и включённая музыка. Два процессорных ядра — а это, по сути, два процессора, справятся с разными задачами быстрее одного. Два ядра сделают это несколько быстрее. Четыре — ещё быстрее, чем два.

В первые годы существования технологии многоядерности далеко не все программы умели работать даже с двумя ядрами процессора. К 2014 году подавляющее большинство приложений отлично понимают и умеют пользоваться преимуществами нескольких ядер. Скорость обработки задач на двухядерном процессоре редко увеличивается в два раза, но прирост производительности есть почти всегда.

Поэтому укоренившийся миф о том, что, якобы, программы не могут использовать несколько ядер — устаревшая информация. Когда-то действительно было так, сегодня ситуация улучшилась кардинально. Преимущества от нескольких ядер неоспоримы, это факт.

Когда меньше ядер у процессора — лучше

Не следует покупать процессор по неверной формуле «чем больше ядер — тем лучше». Это не так. Во-первых, 4, 6 и 8-ядерные процессоры ощутимо дороже своих двухядерных собратьев. Значительная прибавка в цене далеко не всегда оправдана с точки зрения в производительности. К примеру, если 8-ядерник окажется лишь на 10% быстрее CPU с меньшим количеством ядер, но будет в 2 раза дороже, то такую покупку сложно оправдать.

Во-вторых, чем больше ядер у процессора, тем он «прожорливее» с точки зрения энергопотребления. Нет никакого смысла покупать гораздо более дорогой ноутбук с 4-ядерным (8-поточным) Core i7, если на этом ноутбуке будут обрабатываться лишь текстовые файлы, просматриваться интернет и так далее. Никакой разницы с двухядерником (4 потока) Core i5 не будет, да и классический Core i3 лишь с двумя вычислительными потоками не уступит более именитому «коллеге». А от батарейки такой мощный ноутбук проработает гораздо меньше, чем экономичный и нетребовательный Core i3.

Многоядерные процессоры в мобильных телефонах и планшетах

Мода на несколько вычислительных ядер внутри одного процессора касается и мобильных аппаратов. Смартфоны вместе с планшетами с большим количеством ядер почти никогда не используют все возможности своих микропроцессоров. Двухядерные мобильные компьютеры иногда действительно работают чуть быстрее, но 4, а тем более 8 ядер — откровеннейший перебор. Аккумулятор расходуется совершенно безбожно, а мощные вычислительные устройства попросту простаивают без дела. Вывод — многоядерные процессоры в телефонах, смартфонах и планшетах — лишь дань маркетингу, а не насущная необходимость. Компьютеры — более требовательные устройства, чем телефоны. Два процессорных ядра им действительно нужны. Четыре — не помешают. 6 и 8 — излишество в обычных задачах и даже в играх.

Как выбрать многоядерный процессор и не ошибиться?

Практическая часть сегодняшней статьи актуальна на 2014 год. Вряд ли в ближайшие годы что-то серьёзно поменяется. Речь пойдёт только о процессорах производства Intel. Да, AMD предлагает неплохие решения, но они менее популярны, да и разобраться в них сложнее.

Заметим, что таблица основана на процессорах образца 2012-2014 годов. Более старые образцы имеют другие характеристики. Также мы не стали упоминать редкие варианты CPU, например — одноядерный Celeron (бывают и такие даже сегодня, но это нетипичный вариант, который почти не представлен на рынке). Не следует выбирать процессоры исключительно по количеству ядер внутри них — есть и другие, более важные характеристики. Таблица лишь облегчит выбор многоядерного процессора, но конкретную модель (а их десятки в каждом классе) следует покупать только после тщательного ознакомления с их параметрами: частотой, тепловыделением, поколением, размером кэша и другими характеристиками.

Процессор Количество ядер Вычислительные потоки Типичная область применения
Atom 1-2 1-4 Маломощные компьютеры и нетбуки. Задача процессоров Atom — минимальное энергопотребление. Производительность у них минимальна.
Celeron 2 2 Самые дешёвые процессоры для настольных ПК и ноутбуков. Производительности достаточно для офисных задач, но это совсем не игровые CPU.
Pentium 2 2 Столь же недорогие и малопроизводительные процессоры Intel, как и Celeron. Отличный выбор для офисных компьютеров. Pentium оснащаются чуть более ёмким кэшем, и, иногда, слегка повышенными характеристиками по сравнению с Celeron
Core i3 2 4 Два достаточно мощных ядра, каждое из которых разделено на два виртуальных «процессора» (Hyper-Threading). Это уже довольно мощные CPU при не слишком высоких ценах. Хороший выбор для домашнего или мощного офисного компьютера без особой требовательности к производительности.
Core i5 4 4 Полноценные 4-ядерники Core i5 — довольно дорогие процессоры. Их производительности не хватает лишь в самых требовательных задачах.
Core i7 4-6 8-12 Самые мощные, но особенно дорогие процессоры Intel. Как правило, редко оказываются быстрее Core i5, и лишь в некоторых программах. Альтернатив им просто нет.

Краткий итог статьи «Вся правда о многоядерных процессорах». Вместо конспекта

  • Ядро процессора — его составная часть. Фактически, самостоятельный процессор внутри корпуса. Двухядерный процессор — два процессора внутри одного.
  • Многоядерность сравнима с количеством комнат внутри квартиры. Двухкомнатные лучше однокомнатных, но лишь при прочих равных характеристиках (расположение квартиры, состояние, площадь, высота потолков).
  • Утверждение о том, что чем больше ядер у процессора, тем он лучше — маркетинговая уловка, совершенно неверное правило. Квартиру ведь выбирают далеко не только по количеству комнат, но и по её расположению, ремонту и другим параметрам. Это же касается и нескольких ядер внутри процессора.
  • Существует «виртуальная» многоядерность — технология Hyper-Threading. Благодаря этой технологии, каждое «физическое» ядро разделяется на два «виртуальных». Получается, что у 2-ядерного процессора с Hyper-Threading лишь два настоящих ядра, но эти процессоры одновременно обрабатывают 4 вычислительных потока. Это действительно полезная «фишка», но 4-поточный процессор нельзя считать четырёхядерным.
  • Для настольных процессоров Intel: Celeron — 2 ядра и 2 потока. Pentium — 2 ядра, 2 потока. Core i3 — 2 ядра, 4 потока. Core i5 — 4 ядра, 4 потока. Core i7 — 4 ядра, 8 потоков. Ноутбучные (мобильные) CPU Intel имеют иное количество ядер/потоков.
  • Для мобильных компьютеров часто важнее экономичность в энергопотреблении (на практике — время работы от батареи), чем количество ядер.

Задача в общем виде

Наши постоянные читатели, быть может, помнят серию статей, которая выходила в 2009 году под общим заголовком «Влияние различных характеристик на быстродействие процессоров современных архитектур ». В ней мы рассматривали некоторое количество сферических процессоров в вакууме, чтобы на основе анализа их быстродействия составить общее впечатление о скорости процессоров реальных и факторах, на неё влияющих. В новом году, после выхода следующей версии методики, мы решили творчески переработать опробованный ранее метод с уклоном в большую реалистичность исследуемых вопросов, то есть моделируя ситуации по возможности реальные. Как и в прошлый раз, начать мы решили с продукции компании AMD, а именно - с самой новой её платформы: Socket AM3. Благо, производитель обещает этой платформе достаточно долгую жизнь, популярность её в пользовательской среде велика, да и название себе компания подобрала более удачное, чем конкурент - с точки зрения сортировки по алфавиту. :)

Нынешняя линейка AMD на первый взгляд кажется несколько хаотичной (мы бы сказали, что и на все последующие тоже…), однако логику производителя понять можно: разумеется, гораздо приятнее бракованный процессор продать, чем выбросить. А т. к. модификаций с различными объёмами и типами кэшей и количеством ядер эта компания выпускает достаточно много, соответственно, есть большой соблазн придумать для экземпляра с «бракованным» ядром или кэшем какое-то название, ядро или часть кэша отключить, а процессор всё-таки продать. :) Благодаря этой замечательной, новаторской политике AMD, в линейке производимых ею AM3-процессоров наблюдается аж три разновидности двухъядерных - с разными объёмами L2-кэша, и даже с наличием L3; две модификации трёхъядерных - с L3 и без него; и снова три модификации четырёхъядерных - с L3 и без него, а также с различными объёмами L3. Кроме того, выпускается для платформы AM3 ещё и одноядерный Sempron. Сведя в одну небольшую таблицу основные технические характеристики CPU для платформы AM3, мы наконец-таки имеем шанс понять, что определённого рода логика в модельном ряде AMD есть:

Sempron Athlon II X2 Phenom II X2 Athlon II X3 Phenom II X3 Athlon II X4 Phenom II X4 Phenom II X6
ядер 1 2 2 3 3 4 4 6
кэш L2, КБ 1024 2×512/1024 2×512 3×512 3×512 4×512 4×512 6×512
кэш L3, КБ 6144 6144 4096/6144 6144

Итак, мы наблюдаем достаточно логичное «путешествие» от 1 ядра к 6, сопровождающееся вариациями на тему объёма L2-кэша, а также наличия или отсутствия L3 и его объёма. При этом объёмом L2 AMD «играется» на относительно слабых процессорах (двухъядерных), а далее в качестве универсального «убыстрятеля всего» используется введение L3. Также можно отметить два одинаково странно смотрящихся процессора: Phenom II X2, который при всего 2 ядрах имеет гигантский L3-кэш, и, наоборот, Athlon II X4 - который при 4 ядрах лишён оного совсем. По идее, первый должен являться идеальным вариантом для старого ПО без многопоточной оптимизации (хотя тогда ему и второе-то ядро не очень нужно…), а второй - процессором для оптимистов, надеющихся на то, что 4-ядерный CPU победит все процессоры с меньшим количеством ядер, невзирая на парусник объём кэша. Так оно будет или не так - посмотрим на результаты…

Соответственно, вырисовываются наиболее интересные сопоставления с точки зрения анализа производительности:

  1. Увеличение количества ядер при одинаковом объёме кэша:
    1. от 1 ядра к 2;
    2. от 2 ядер к 3;
    3. от 3 ядер к 4;
    4. от 4 ядер к 6.
  2. Увеличение количества кэша при одинаковом количестве ядер:
    1. на 2-ядерных процессорах (разные размеры L2, добавление L3);
    2. на 3-ядерных процессорах (добавление L3);
    3. на 4-ядерных процессорах (добавление L3, разные размеры L3).
  3. Вариации на тему «меньше ядер, но больше кэш*»:
    1. 1-ядерный процессор в сравнении с 2-ядерным;
    2. 2-ядерный процессор в сравнении с 3-ядерным.

* - подразумевается: на одиночное ядро.

Как видите, почвы для исследований - поле непаханое. Правда, для того чтобы мы могли зафиксировать своё внимание именно на влиянии вышеперечисленных факторов, убрав все мешающие, нам понадобилось всё-таки сделать один реверанс в сторону «синтетичности» - независимо от того, существует ли такая модель CPU в реальности, все участники тестов работали на одной частоте ядра: 2,6 ГГц. Впрочем, не так уж всё и плохо: Athlon II X3/X4, Phenom II X3/X4 с такой частотой действительно существуют, не бывает только 2600-мегагерцевых Sempron, Athlon/Phenom II X2 и Phenom II X6.Тестирование

Как и было сказано выше, тестирование проводилось в соответствии с новейшей методикой 2010 года , с некоторыми незначительными модификациями:

  1. Поскольку задача перед нами стояла достаточно масштабная и интересная, а все участники тестов вели себя весьма пристойно, и необъяснимых с точки зрения логики странностей практически не демонстрировали, нами было принято волюнтаристское решение все опциональные тесты объявить постоянными - таким образом, они присутствуют в основном разделе, и участвуют на общих основаниях в среднем балле.
  2. Поскольку некоторое количество рассмотренных процессоров являются, так сказать «виртуальными», и в реальности не производятся, для данного цикла, для удобства сравнения, был выбран свой собственный эталонный (100-балльный) процессор из числа принимавших участие именно в этой серии тестов: AMD Phenom II X4 810.

Также некоторым, быть может, покажется неожиданной первая тема, которую мы решили исследовать: очевидно, что в списке вопросов она находится отнюдь не на первом месте, с какого конца ни посмотри. Здесь вам придётся просто простить нам некую хаотичность в последовательности выхода серий: она обуславливается простым «рабочим моментом» - серии будут выходить в той последовательности, в которой будут становиться доступны рассматриваемые в них результаты. К сожалению, обширность нашей методики тестирования обуславливает один её неизбежный недостаток: тесты идут очень долго. Соответственно, если бы мы решили пожертвовать оперативностью ради красоты, первую серию (по логике, начинать следовало бы со сравнений с участием Sempron), вам пришлось бы ждать ещё примерно месяц, в то время как эта готова уже сейчас. Мы решили, наоборот, пожертвовать красотой ради оперативности, и, надеемся, вы нас поймёте. К тому же формат нынешнего тестирования: «одна статья - один ответ на конкретный вопрос», - вполне располагает к такому подходу: ведь нет «важных» и «неважных» вопросов, каждый из них по-своему интересен, и каждый наверняка найдёт своего читателя.

Итак, приступим. В этой серии мы рассмотрим, как и было обещано, один простой и конкретный вопрос : имеет ли 3-ядерный процессор, в котором на каждое ядро приходится по 512 килобайт L2-кэша, преимущество над двухъядерным CPU, в котором на каждое ядро приходится в 2 раза больше L2-кэша - 1024 килобайта? В плюсах у первого - дополнительное ядро. С другой стороны, каждое ядро второго может работать с удвоенным объёмом кэшированных данных. Ситуация, между прочим, вовсе не такая очевидная, как может показаться на первый взгляд…

3D-визуализация

2 ядра + 2×1024 L2 3 ядра + 3×512 L2 %%
79 92
94 91
94 90
98 95
95 90
98 94
Group Score 92 91

Да-да, к вопросу о неочевидности ситуации. Поразительно, но при визуализации трёхмерной картинки, только один пакет из шести смог получить какую-то пользу от дополнительного ядра, а вот 5 остальных на уменьшение объёма L2 отреагировали весьма критически. Разумеется, понятно, с чем это связано: скорее всего, они просто не смогли задействовать третье ядро, и оно простаивало. Что ж - похвалим разработчиков 3ds max за хорошую оптимизацию, но заодно констатируем: они пока в явном меньшинстве.

Рендеринг трёхмерных сцен

2 ядра + 2×1024 L2 3 ядра + 3×512 L2 %%
63 83
51 74
48 71
Group Score 54 76

В этой группе прирост производительности от добавления ещё одного ядра близок к идеальному, но относительно рендеринга данный факт не вызывает никакого удивления: 512 килобайт L2-кэша ядрам вполне хватает, т.к. сцена разбивается на достаточно мелкие параллельно обсчитываемые кусочки.

Научные и инженерные расчёты

2 ядра + 2×1024 L2 3 ядра + 3×512 L2 %%
89 95
96 93
94 91
92 87
98 94
65 73
74 84
Group Score 87 88

Ситуация более сложная: инженерные CAD, судя по всему, оперируют достаточно большими объёмами информации при подсчёте, а вот задействовать третье ядро не умеют (справедливости ради: они и второе зачастую игнорируют…). «Выстрелили» неплохо многопоточно оптимизированные Maya, Mathematica (напомним, что начиная с 2010 года мы используем для этого пакета многопоточно-оптимизированный вариант теста MMA) и MATLAB, за счёт чего общий балл по группе вывел в лидеры 3-ядерный CPU.

Растровая графика

2 ядра + 2×1024 L2 3 ядра + 3×512 L2 %%
101 97
96 97

Corel PhotoImpact

99 98
73 86
Group Score 92 95

Разница в ±1 процент вполне укладывается в погрешность измерений, поэтому нам только остаётся выделить кэшелюбивый ACDSee и хорошо многопоточно оптимизированный Photoshop. И снова за счёт более ощутимого преимущества в хорошо оптимизированном приложении 3-ядерник лидирует в общем балле по группе.

Сжатие данных

Наш тест компиляции (по крайней мере, так должно быть в теории…) сейчас поддерживает до 16 потоков, поэтому выигрыш процессора с бо́льшим количеством ядер не удивляет.

Java

Совсем новая, неизведанная группа тестов, статистики по которой ещё нет, но достаточно банальный результат: два бенчмарка отдали небольшое преимущество третьему ядру, а третий вообще не заметил никакой разницы.

Кодирование аудио

2 ядра + 2×1024 L2 3 ядра + 3×512 L2 %%
50 67
50 66

Monkey’s Audio

50 67
50 67
51 67
50 67
Group Score 50 67

Тесты на скорость кодирования аудио начиная с 2009 года получили прекрасную многопоточную оптимизацию за счёт использование пакета dbPoweramp, который умеет запускать на исполнение столько процессов кодирования, сколько он обнаружит в системе процессоров. В этой ситуации выигрыш 3-ядерника был предрешён.

Кодирование видео

2 ядра + 2×1024 L2 3 ядра + 3×512 L2 %%
77 93

Mainconcept (VC-1)

64 81
49 72
55 76
50 65
72 85
Group Score 61 79

Пакеты для кодирования видео также демонстрируют очень достойную многопроцессорную оптимизацию, в том числе ранее не использовавшиеся нами Adobe Premiere и Sony Vegas. Причём, заметьте: у двух вышеназванных пакетов она одна из лучших в группе.

Воспроизведение видео

2 ядра + 2×1024 L2 3 ядра + 3×512 L2 %%
50 70
104 49
53 75
48 72
Group Score 64 67

Новая группа тестов преподнесла один из немногочисленных сюрпризов, резко негативно отреагировав на 3-ядерник. Забегая вперёд, отметим: похоже, речь идёт именно о реакции на 3 ядра, а не на уменьшение объёма L2, т. к. 4-ядерник настолько большого падения производительности не демонстрирует. Возможно, имеет место феномен категорического «непереваривания» конкретным ПО количества ядер, отличного от степени двойки, мы ранее с таким уже сталкивались.

Виртуальная машина

2 ядра + 2×1024 L2 3 ядра + 3×512 L2 %%
92 97
60 84
84 90

World in Conflict

65 70
Group Score 69 84

Подавляющее большинство игр вполне удачно задействавали третье ядро, только Borderlands, S.T.A.L.K.E.R., Crysis и World in Conflict не испытывают особого оптимизма (менее 10% прибавки). Не то чтобы тенденция была такая уж чёткая (UT3 ей, например, противоречит), но можно заметить, что 3 игры из перечисленных четырех - не очень-то новые.

Общий балл

2 ядра + 2×1024 L2 3 ядра + 3×512 L2 %%
71 80

Общий балл вполне в духе времени: даже с обрезанным кэшем, многоядерность всё равно в фаворе. Впрочем, не без пикантных подробностей: 16 тестов из 57 предпочли процессор с меньшим количеством ядер, но большим объёмом L2 на ядре. Есть искушение объявить данный факт происками ретроградов и леностью программистов, недостаточно хорошо умеющих задействовать ресурсы современных процессоров… и, наверное, так оно и есть. Всё-таки для нормальной поддержки многоядерности нужно проделать определённую работу (иногда немаленькую), а большой L2 иногда вызывает повышение производительности «сам по себе», без дополнительных усилий программиста. В таком случае, закончить следует на оптимистической ноте: судя по общему баллу, ленивцев среди разработчиков ПО становится всё меньше. Что же касается практических рекомендаций, то они очевидны: в целом, в случае с Athlon II, 3 ядра всё-таки однозначно лучше, чем 2.

Pavel_A 24.05.2012 - 12:08

Всем привет.
Нужен переносной комп с большим дисплеем, что бы работать в Экселе, ну иногда кино посмотреть. Главное большой экран и низкая цена.
Остановился на 17 дюймах.
По цене остановился на ХП павилион. Есть варианты с разными процессорами.
Какой лучше процессор?
Intel Core i3 2350M Processor 2.3GHz
или
AMD Quad-Core A6-3420M Accelerated Processor with AMD Radeon HD 6520G discrete-class graphics

И что лучше ХП или АСУС (АСУС мне больше нравится и хард у него побольше, но он дороже и сильно душит жаба).

Goldheart2 24.05.2012 - 01:07

Intel Core i3 2350M Processor 2.3GHz лучше.

Pavel_A 24.05.2012 - 01:41

Goldheart2
Intel Core i3 2350M Processor 2.3GHz лучше
На сколько?
Он ведь 2 ядра по 2,3,а тот 4 ядра по 1,5. В сумме второй более мощный получается?

Dr.Acula 24.05.2012 - 02:43

Pavel_A
На сколько?

http://www.notebookcheck.net/M...ist.2436.0.html
По тестам, Intel лучше. И производительность процессора зависит не только от количества ядер и частоты. Вы мне поверите, если я вам скажу, что процессор с одним ядром и частотой 1650МГц, при выполнении некоторых задач, может работать гораздо быстрее, чем какой-нибудь интел тысяч за 20?

HP или Асус - зависит от конкретной модели.

Goldheart2 24.05.2012 - 03:03

Он ведь 2 ядра по 2,3,а тот 4 ядра по 1,5. В сумме второй более мощный получается?

Не получается, у интела производительность на гигагерц значительно выше, поэтому даже с двумя ядрами он делает A6-3420M, в рендере разница около 14 процентов, но это задача хорошо распараллеливания, а вот если взять большинство стандартных приложений, где задействован один поток, реже два, вот тут i3 2350M будет просто рвать 3420M. А в случае вашего экселя речь как раз идет об одном потоке. Графика у 3420M производительнее, но у 2350M преимущество по части воспроизведение видео в лице мощнейшего асик декодера.

c00xer 24.05.2012 - 07:12

Goldheart2
а вот если взять большинство стандартных приложений, где задействован один поток, реже два
Вот на это и надо обратить внимание. На задачу. BTW, некоторые игры (тот же WorldofTanks) до сих пор однопоточные. Как обидно на 4-ядерном камне видеть загрузку 25%.

Pavel_Crio 27.05.2012 - 21:24

Да, Intel лучше.




Goldheart2 28.05.2012 - 08:14

P.S. А вот про Excel не нужно)) Установите Excel 2007/2010, там в настройках есть (Параметры Excel - Дополнительно):

Включить многопоточные вычисления?
- использовать все процессоры данного компьютера (у меня показывает 4, у меня Intel Quad)
- вручную (можно выбрать 1,2 .. в зависимости от ядер)

Многие люди при покупке процессора стараются выбрать что-нибудь покруче, с несколькими ядрами и большой тактовой частотой. Но при этом мало кто знает, на что влияет количество ядер процессора в действительности. Почему, например, обычный и простенький двухъядерник может оказаться быстрее четырехядерника или тот же "проц" с 4 ядрами будет быстрее "проца" с 8 ядрами. Это довольно интересная тема, в которой определенно стоит разобраться более детально.

Вступление

Прежде чем начать разбираться, на что влияет количество ядер процессора, хотелось бы сделать небольшое отступление. Еще несколько лет назад разработчики ЦП были уверены в том, что технологии производства, которые так стремительно развиваются, позволят выпускать "камни" с тактовыми частотами до 10 Ггц, что позволит пользователям забыть о проблемах с плохой производительностью. Однако успех достигнут не был.

Как бы ни развивался техпроцесс, что "Интел", что "АМД" уперлись в чисто физические ограничения, которые попросту не позволяли выпускать "процы" с тактовой частотой до 10 Ггц. Тогда и было принято решение сфокусироваться не на частотах, а на количестве ядер. Таким образом, началась новая гонка по производству более мощных и производительных процессорных "кристаллов", которая продолжается и по сей день, но уже не столь активно, как это было на первых порах.

Процессоры Intel и AMD

На сегодняшний день "Интел" и "АМД" являются прямыми конкурентами на рынке процессоров. Если посмотреть на выручку и продажи, то явное преимущество будет на стороне "синих", хотя в последнее время "красные" стараются не отставать. У обоих компаний имеется хороший ассортимент готовых решений на все случаи жизни - от простого процессора с 1-2 ядрами до настоящих монстров, у которых количество ядер переваливает за 8. Обычно подобные "камни" используются на специальных рабочих "компах", которые имеют узкую направленность.

Intel

Итак, на сегодняшний день у компании Intel успехом пользуются 5 видов процессоров: Celeron, Pentium, и i7. Каждый из этих "камней" имеет разное количество ядер и предназначенные для разных задач. Например, Celeron имеет всего 2 ядра и используется в основном на офисных и домашних компьютерах. Pentium, или, как его еще называют, "пенек", также используется в дому, но уже имеет гораздо лучшую производительность, в первую очередь за счет технологии Hyper-Threading, которая "добавляет" физическим двум ядрам еще два виртуальных ядра, которые называют потоками. Таким образом, двухъядерный "проц" работает как самый бюджетный четырехъядерник, хотя это не совсем корректно сказано, но основная суть именно в этом.

Что же касается линейки Core, то тут примерно схожая ситуация. Младшая модель с цифрой 3 имеет 2 ядра и 2 потока. Линейка постарше - Core i5 - имеет уже полноценные 4 или 6 ядер, но лишена функции Hyper-Threading и дополнительных потоков не имеет, кроме как 4-6 стандартных. Ну и последнее - core i7 - это топовые процессоры, которые, как правило, имеют от 4 до 6 ядер и в два раза больше потоков, т. е., например, 4 ядра и 8 потоков или 6 ядер и 12 потоков.

AMD

Теперь стоит сказать про AMD. Список "камушков" от данной компании огромен, смысла перечислять все нет, поскольку большинство из моделей уже попросту устарели. Стоит, пожалуй, отметить новое поколение, которое в некотором смысле "копирует" "Интел" - Ryzen. В данной линейке также присутствуют модели с номерами 3, 5 и 7. Главное отличие от "синих" у Ryzen заключается в том, что самая младшая модель уже сразу предоставляет полноценные 4 ядра, а у старшей их не 6, а целых восемь. Кроме этого, и количество потоков меняется. Ryzen 3 - 4 потока, Ryzen 5 - 8-12 (в зависимости от кол-ва ядер - 4 или 6) и Ryzen 7 - 16 потоков.

Стоит упомянуть и о еще одной линейке "красных" - FX, которая появилась в 2012 году, и, по сути, данная платформа уже считается устаревшей, но благодаря тому, что сейчас все больше и больше программ и игр начинает поддерживать многопоточность, линейка Vishera вновь обрела популярность, которая наряду с низкими ценами только растет.

Ну а что касается споров касательно частоты процессора и количества ядер, то, по сути, правильнее смотреть в сторону второго, поскольку с тактовыми частотами уже давно все определились, и даже топовые модели от "Интел" работают на номинальных 2. 7, 2. 8, 3 Ггц. Помимо этого, частоту всегда можно поднять при помощи оверклокинга, но в случае с двухъядерником это не даст особого эффекта.

Как узнать сколько ядер

Если кто-то не знает, как определить количество ядер процессора, то сделать это можно легко и просто даже без скачивания и установки отдельных специальных программ. Достаточно лишь зайти в "Диспетчер устройств" и нажать на маленькую стрелочку рядом с пунктом "Процессоры".

Получить более подробную информацию о том, какие технологии поддерживает ваш "камень", какая у него тактовая частота, номер его ревизии и многое другое можно при помощи специальной и маленькой программки CPU-Z. Скачать ее можно бесплатно на официальном сайте. Есть версия, которая не требует установки.

Преимущество двух ядер

В чем может быть преимущество двухъядерного процессора? Много в чем, например, в играх или приложениях, при разработке которых основным приоритетом была однопоточная работа. Взять хотя бы для примера игру Wold of Tanks. Самые обычные двухъядерники типа Pentium или Celeron будут выдавать вполне приличный результат по производительности, в то время как какой-нибудь FX от AMD или INTEL Core задействуют гораздо больше своих возможностей, а итог будет примерно таким же.

Чем лучше 4 ядра

Чем 4 ядра могут быть лучше двух? Лучшей производительностью. Четырехъядерные "камни" рассчитаны уже на более серьезную работу, где простые "пеньки" или "селероны" попросту не справятся. Отличным примером тут послужит любая программа по работе с 3D-графикой, например 3Ds Max или Cinema4D.

Во время процесса рендеринга данные программы задействуют максимум ресурсов компьютера, включая оперативную память и процессор. Двухъядерные ЦП будут очень сильно отставать по времени обработки рендера, и чем сложнее будет сцена, тем больше времени им потребуется. А вот процессоры с четырьмя ядрами справятся с данной задачей гораздо быстрее, поскольку им на помощь придут еще и дополнительные потоки.

Конечно, можно взять и какой-нибудь бюджетный "процик" из семейства Core i3, например, модель 6100, но 2 ядра и 2 дополнительных потока все равно будут уступать полноценному четырехядернику.

6 и 8 ядер

Ну и последний сегмент многоядерников - процессоры с шестью и восемью ядрами. Их основное предназначение, в принципе, точно такое же, как и у ЦП выше, только вот нужны они там, где обычные "четверки" не справляются. Кроме этого, на базе "камней" с 6 и 8 ядрами строят полноценные профильные компьютеры, которые будут "заточены" под определенную деятельность, например, монтаж видео, 3Д-программы для моделирования, рендеринг готовых тяжелых сцен с большим количеством полигонов и объектов и т. д.

Помимо этого, такие многоядерники очень хорошо себя показывают в работе с архиваторами или в приложениях, где нужны хорошие вычислительные возможности. В играх, которые оптимизированы под многопоточность, равных таких процессорам нет.

На что влияет количество ядер процессора

Итак, на что же еще может влиять количество ядер? В первую очередь на повышение энергопотребления. Да, как бы это ни прозвучало удивительно, но это так и есть. Особо переживать не стоит, потому как в повседневной жизни данная проблема, если можно так выразиться, заметна не будет.

Второе - это нагрев. Чем больше ядер, тем лучше нужна система охлаждения. Поможет измерить температуру процессора программа, которая называется AIDA64. При запуске нужно нажать на "Компьютер", а затем выбрать "Датчики". Следить за температурой процессора нужно, потому как если он будет постоянно перегреваться или работать на слишком высоких температурах, то через какое-то время он просто сгорит.

Двухъядерники незнакомы с такой проблемой, потому как не обладают слишком высокой производительностью и тепловыделением соответственно, а вот многоядерники - да. Самыми "горячими" считаются камни от AMD, особенно серии FX. Например, возьмем модель FX-6300. Температура процессора в программе AIDA64 находится в отметке около 40 градусов и это в режиме простоя. При нагрузке цифра будет расти и если случится перегрев, то комп выключится. Так что, покупая многоядерник, нужно не забывать о кулере.

На что влияет количество ядер процессора еще? На многозадачность. Двухъядерные"процы" не смогут обеспечить стабильную производительность при работе в двух, трех и более программ одновременно. Самый простой пример - стримеры в интернете. Помимо того, что они играют в какую-нибудь игру на высоких настройках, у них параллельно запущена программа, которая позволяет транслировать игровой процесс в интернет в режиме онлайн, работает и интернет-браузер с несколькими открытыми страницами, где игрок, как правило, читает комментарии смотрящих его людей и следит за прочей информацией. Обеспечить должную стабильность может даже далеко не каждый многоядерник, не говоря уже о двух- и одноядерных процессорах.

Также стоит сказать пару слов о том, что у многоядерных процессоров есть очень полезная вещь, которая называется "Кеш третьего уровня L3". Этот кеш имеет определенный объем памяти, в который постоянно записывается различная информация о запущенных программах, выполненных действиях и т. д. Нужно это все для того, чтобы увеличить скорость работы компьютера и его быстродействие. Например, если человек часто пользуется фотошопом, то эта информация сохранится в памяти каша, и время на запуск и открытие программы значительно сократиться.

Подведение итогов

Подводя итог разговора о том, на что влияет количество ядер процессора, можно прийти к одному простому выводу: если нужна хорошая производительность, быстродействие, многозадачность, работа в тяжелых приложениях, возможность комфортно играть в современные игры и т. д., то ваш выбор - процессор с четырьмя ядрами и больше. Если же нужен простенький "комп" для офиса или домашнего пользования, который будет использоваться по минимуму, то 2 ядра - это то что нужно. В любом случае, выбирая процессор, в первую очередь нужно проанализировать все свои потребности и задачи, и только после этого рассматривать какие-либо варианты.

Понравилось? Лайкни нас на Facebook